首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers, Part C. Journal of mechanical engineering science >High-precision trajectory tracking design and simulation for six degree of freedom robot based on improved active disturbance rejection control
【24h】

High-precision trajectory tracking design and simulation for six degree of freedom robot based on improved active disturbance rejection control

机译:High-precision trajectory tracking design and simulation for six degree of freedom robot based on improved active disturbance rejection control

获取原文
获取原文并翻译 | 示例
           

摘要

High-precision trajectory tracking control is an important factor in the performance of industrial robots. In this study, a high-precision trajectory tracking strategy was proposed for controlling a degree of freedom serial robot on the basis of improved active disturbance rejection control. An independent control strategy of a single joint was adopted, and the corresponding decoupling control law was designed. An attitude trajectory-planning algorithm based on the circular-blending quaternion curve was improved. The position and attitude trajectories were transformed into the joint trajectory by using a kinematics equation and inverse velocity Jacobian matrix. The above-mentioned transformation link was used as a preprocessing link of the active disturbance rejection control, which is used for replacing the tracking differentiator of a typical active disturbance rejection control to eliminate the effect of the tracking delay. An experimental simulation was conducted by combining MATLAB and ADAMS. Simulation results show that the proposed control strategy can perform the tracking control of a task-space trajectory. The tracking precision of position and attitude trajectories were 0.01 mm and 0.01 s, respectively.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号