首页> 外文期刊>Carbon: An International Journal Sponsored by the American Carbon Society >Biodurability of single-walled carbon nanotubes depends on surface functionalization
【24h】

Biodurability of single-walled carbon nanotubes depends on surface functionalization

机译:单壁碳纳米管的生物耐久性取决于表面功能化

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Recent research has led to increased concern about the potential adverse human health impacts of carbon nanotubes, and further work is needed to better characterize those risks and develop risk management strategies. One of the most important determinants of the chronic pathogenic potential of a respirable fiber is its biological durability, which affects the long-term dose retained in the lungs, or biopersistence. The present article characterizes the biodurability of single-walled carbon nanotubes using an in vitro assay simulating the phagolysosome. Biodurability is observed to depend on the chemistry of nanotube surface functionalization. Single-walled nanotubes with carboxylated surfaces are unique in their ability to undergo 90-day degradation in a phagolysosomal simulant leading to length reduction and accumulation of ultrafine solid carbonaceous debris. Unmodified, ozone-treated, and aryl-sulfonated tubes do not degrade under these conditions. We attribute the difference to the unique chemistry of acid carboxylation, which not only introduces COOH surface groups, but also causes collateral damage to the tubular grapheme backbone in the form of neighboring active sites that provide points of attack for further oxidative degradation. These results suggest the strategic use of surface carboxylation in nanotube applications where biodegradation may improve safety or add function.
机译:最近的研究导致人们越来越关注碳纳米管对人类健康的潜在不利影响,需要进一步的工作来更好地描述这些风险并制定风险管理策略。可吸入纤维的慢性致病潜力的最重要决定因素之一是其生物耐久性,这会影响保留在肺部的长期剂量或生物持久性。本文使用模拟吞噬溶酶体的体外测定法表征了单壁碳纳米管的生物耐久性。观察到生物耐久性取决于纳米管表面功能化的化学性质。具有羧化表面的单壁纳米管的独特之处在于它们能够在吞噬溶酶体模拟物中经历 90 天的降解,导致长度缩短和超细固体碳质碎片的积累。未经改性、臭氧处理和芳基磺化的管在这些条件下不会降解。我们将这种差异归因于酸性羧化的独特化学性质,它不仅引入了COOH表面基团,而且还以相邻活性位点的形式对管状字素骨架造成附带损害,这些活性位点为进一步的氧化降解提供了攻击点。这些结果表明,在纳米管应用中战略性地使用表面羧化,在这些应用中,生物降解可以提高安全性或增加功能。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号