首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >What did W. H. Perkin actually make when he oxidised aniline to obtain mauveine?
【24h】

What did W. H. Perkin actually make when he oxidised aniline to obtain mauveine?

机译:W. H. Perkin 在氧化苯胺获得紫红色时实际上做了什么?

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. 1 1994 What did W. H. Perkin Actually Make when He Oxidised Aniline to Obtain Mauvei ne? Otto Meth-Cohn * and Mandy Smith t Chemistry Department, University of Sunderland, Sunderland SR I 3S0,UK The literature structure for mauveine has been shown to be wrong. Analysis of samples of mauveine made by Perkin in his factory show them to be primarily a mixture of two phenazinium dyes, 3-amino-2- methyl- 5- phenyl-7- (p-tolyl) phenazinium acetate and 3-amino-2,9-dimethyl-5- phenyl-7 -(p-tolyl) phenazinium acetate In 1856 William Henry Perkin at the age of 18 years, endeavoured to make quinine by oxidative dimerisation of N-allyltoluidine (mostly para) with potassium dichromate. The synthesis of quinine was not achieved for a further 88 years.' However, when he similarly oxidised 'aniline' (derived from crude coal-tar benzene and thus containing toluene) he obtained a black precipitate from which he was able to extract a purple dye in about 5 yield. This dye became known as mauveine and was sold as an acetate salt.This remarkable event signalled the birth of the dyestuffs industry and indeed the chemical industry. Perkin established that a similar dye was obtained by oxidation of toluidines, xylidines and other anilines and that his original impure aniline gave a better dye than that obtained from pure aniline. This latter product was named pseudo- mauveine from which he showed that mauveine was derived from a base of formula C27H24N4. He concluded that mauveine was a mixture of pseudomauveine (to which he gave the structure of the parent base C,,H,,N,) and a trimethyl derivative derived from p-toluidine and aniline., The Literature Structure of Mauvehe.-The structure of pseudomauveine 1 was established by Fischer and Hepp and by Nietzki4 by synthesis in several ways.These involved oxidative couplings as outlined in Scheme 1. However, the / 1I z Scheme 1 Synthetic methods for pseudomauveine literature structure for mauveine 2 emerged without any indication of proof. It appears in Chemical Abstracts (the first appearance referring to Volume 72, in 1970),5and in the dyers definitive bible, The Colour Index from its first edition in 1924 to date.6 Beilstein does not give a ~tructure,~Comprehensive Q x-Me 2 Heterocyclic Chemistry gives two different ones and the definitive Weissberger volume on Phenazines correctly quotes the empirical formula of Perkin but presents yet another erroneous ~tructure.~ A recent review on phenazine dyes refers to the structure 2" while the latest definitive work on the history of dyeing attributes the same erroneous structure to Fischer and Hepp, a commonly accepted fallacy." Results and Discussion Given that mauveine is made by oxidation of crude aniline derived by nitration and reduction of a benzene-toluene mix- ture, it is clear that the literature structure cannot be correct in that it implies that m-toluidine is a key requirement (Scheme 2).the Scheme 2 A retrosynthetic analysis of the literature structure of mauveine We therefore obtained a sample of mauveine produced in Perkin's factory from the Perkin collection at Zeneca$ as well as another sample from the British Museum (donated by Imperial College and probably deriving from Hofmann's collection).Perkin commented on the dyes amazing stability and other workers examining a sample of the 1856 dye almost 100 years later noted that it was ~nchanged.~*We were surprised to discover that the dye gave essentially the same ?In partial fulfilment of the requirements for the B.Sc. degree of Sunderland University. 1Thanks to Mr Ken McGee for help in obtaining this compound. combustion analysis data as Perkin recorded. Chemists who examined a sample of Perkin's material 57 years later found that it lost 16.1 weight at 110 OC, mostly water, while Perkin rigorously dried his material prior to analysis.I3 A direct insertion mass spectrum confirmed the presence of several of the methylated homologues of pseudomauveine, the di- and tri-methyl derivatives giving the largest molecular ions together with small peaks for the mono-and tetra-methyl analogues.Thin layer chromatography on silica was most effectively conducted utilising a mixture of isobutyl alcohol, 10 aqueous acetic acid and ethyl acetate (6:1:3, v/v) and revealed two major products A and B, R, values 0.45 and 0.52, respectively, as well as some very minor purple dyes. Flash chromatography on silica gel using the same eluent with rechromatography of the two major fractions gave two fairly pure purple dyes.Standards to Help Elucidate the Mauveine Structure: Phenosafranin and Safranine 0.-In order to help elucidate the structures we also examined the spectra of two commercially available standards, phenosafranin 3 and safranine 0 4 (both from Aldrich, the latter being rather impure despite its claimed -95 purity). The symmetry of the standards allowed ready assignment of their NMR spectra by use of HH-COSY and HC-COSY spectroscopy and further decoupling studies. 7.85(9.51 7.85 (9.5) 0:i~.g CI -7.75-7.9 132.7 Others: 137.3.1 37.9,138.5.159.1 3 07.6q128.9) 7.7-8.qi32.21CI -4 'H NMR (J/Hz),f3C NMR Structure of the mauveine component A (RF 0.45) 5.By a similar study of the 1-and 2-D NMR spectra and the coupling data we now assign the structure of this major component of mauveine as the acetate salt of 5. This molecule can be seen to derive from 2 molecules of aniline, 1 of p-toluidine and 1 of o-toluidine. Noteworthy, in the spectra are the signals to very high field of the 4/6 nuclei both in the standards and the mauveine component A due to the shielding effects of the orthogonal phenyl group and the amino substituents at the 3- and 7-positions. These nuclei are non-equivalent in the mauveine component, one signal showing meta-coupling and the other not, thus indicating the position of one of the methyl substituents. This is supported by the presence of only one proton at -7.21/122 ppm in the proton and carbon spectra, respectively.The extra J. CHEM. SOC. PERKIN TRANS. 1 1994 7.00(8.4)131 .O Me 2.20120.95) 7.67.8 1132.61 5 'H NMR (J/Hz) I3C NMR para-coupled protons clearly indicate the position of the other methyl substituent in the N-phenyl ring. The lower field proton signals of the 2-and 4-protons of component A compared to those of phenosafranin due to the deshielding effect of the N-phenyl ring supports the relative disposition of the two methyl substi tuen ts. Phenosafranin shows a mass spectral molecular ion for the cation (m/z 287) and a larger one for the radical cation of the neutral species, M -1. Strong peaks are evident at m/z 273 (M -N, the 10-nitrogen) and m/z 196 (M -NPh).The mass spectrum of component A conforms to the above structure showing the molecular ion as the base peak (m/z390) and the next strongest peak (m/z 284) for the M -MeC6H4NH ion. In support of this fragmentation a peak at m/z 106 is significant for the ion MeC6H4NH+. Structure of the mauveine component B (RF 0.52) 6.The mass spectral and NMR data confirms that the second component is very similar to the first but contains an extra methyl group. That this group is in the 1-position and the others are as in component A is evident from the very close similarity in the spectra except for the absence of the characteristicl-proton/ carbon signals and the ortho-coupling of the 2-proton (cf spectra for 5 and 6).It is also clear that this minor component derives 2.6a18.21 7.7 Me 6 '-H NMR (J/Hz), f3-C NMR from 1 molecule of aniline, 1 of p-toluidine and 2 molecules of o-toluidine.As was recognised by the early chemists involved with mauveine, o-toluidine and p-toluidine are vital for the formation of the most effective dye and are clearly significantly more reactive in the oxidative coupling process. Experimental General Details.-Phenosafranin and safranine 0 were obtained from Aldrich and used as supplied. Samples of mauveine were obtained from the Perkin Collection, Zeneca p.l.c., Blackley, Manchester and from The Science Museum. Silica gel thin-layer was performed using Merck 0.2 x J. CHEM. SOC. PERKIN TRANS. 1 1994 200 x 200 mm precoated plates (Art.5735) and flash chromatography was conducted with silica from Janssen (0.0354.070 mm). NMR spectra were recorded on a JEOL GSX 270 using 2H,methanol as solvent relative to internal tetramethylsilane. Mass spectra were recorded on a VG Trio 2000 Quadrupole instrument by direct insertion. Microanaly- tical data were provided by Medac Ltd, Brunel University. Mauveine.-The material was examined as supplied. Chromatography was conducted using isobutyl alcohol-ethyl acetate-aqueous acetic acid (5, v/v) in the ratio 60:30:10 (v/v). The two different samples gave identical results. Flash chromatography was conducted on 0.1 g samples and the two main fractions were rechromatographed separately using the same solvent system and the material obtained was dried thoroughly in a vacuum oven at 5OoC prior to examination (Found: C, 67.2; H, 6.3; N, 10.8.Calc. for C27H25N4+- CH,CO2--3H,O, C, 67.16; H, 6.61; N, 10.80). The spectral details are recorded in the Discussion. Acknowledgements We thank Zeneca Specialities and the Science Museum for samples of mauveine, Mr. Ken McGee, archivist of Zeneca Specialties for very helpful discussions and Mr. Peter Kirk- patrick, Perkin’s grandson, both for his wholehearted support in conducting this study and useful background material. References R. B. Woodward and W. von E. Doering, J, Am. Chem. SOC., 1944,66, 849. 2 W. H. Perkin, J. Chem. SOC., 1896,69,596 and references cited therein. 3 0.Fischer and E. Hepp, Chem. Ber., 1888,21,2617; 1893,26, 1194; Liebigs Ann Chem., 1892,272,306.4 R. Nietzki, Chem. Ber., 1896,29, 1442. 5 (a) Chem. Abstr., 1925, 9, 2567 (ref. to A. Cobenzl, Oesterr. Chem- Ztg., 1925, 28, 25). It is of interest that this author recognised that mauveine incorporated 2 molecules of o-toluidine, 1 of p-toluidine and 1 ofaniline. (b)First appearance of structure: Chem. Abstr., 1965, 72,28258a ref. to E. Gurr, J.SOC.Dyers Colour., 1969,85(10), 473. This paper does not contain the structure and neither does the abstract! However the structure of mauveine appears as ‘Phenazenium3-amino-7-anilino-2,8-dimethyl-5-p-tolyl,sulphate’ in the 8th Decennial Index and refers to this paper. 6 Dye number 50245, The Colour Index, 3rd edn., 2nd revision, Soc. Dyers Colourists, Bradford, 1992.In the first edition of 1924 mauveine was entry 846. 7 Beilsteins Handbuch der Organischen Chemie, Verlag von J. Springer, Berlin, 1929, 12, 131; 25, 397 (654); System number 1598. 8 Comprehensive Heterocyclic Chemistry, editors-in-chief A. R. Katritzky and C. W. Rees, Pergamon Press, Oxford, 1984, vol. 1,3 18; vol. 3, 197. 9 G. A. Swan and D. G. L. Felton, Phenazines, Chemistry of Heterocyclic Compounds, ed. E. Weissberger, J. Wiley Sons, New York, 1957, 159. 10 N. Hughes, Phenazine, Oxazine, Thiazine and Sulphur Dyes, Rodd’s Chemistry of Carbon Compounds, vol. IV, eds. S. Coffey and M. F. Ansell, 2nd edn., 1988, 403. 11 A. S. Travis, The Rainbow Makers-The Origins of the Synthetic Dyestuffs Industry in Western Europe, Lehigh University Press, Bethlehem, 1993, 268. It appears that the literature structure was invented by Gustav Schulz who was the first to produce a comprehensive Index of all the known dyes in his Farbstofftabellen, a work that predated and formed the basis of the Colour Index. 12 G. Schultz, Farbstofftabellen, Akademische Verlagsgesellschaft MBH, Leipzig, 7th edn., 1931, vol. 1, 419 (entry 971). This is the earliest edition of Schultz found during this work. However the structure does not appear in A Systematic Survey of the Organic Colouring Matters, 2nd edn., by A. G. Green (founded on the German of G. Schultz and P. Julius), 1904,232 (dye number 593). 13 E. Hibbert, J. SOC. Dyers Colour., 1921, 37, 187. Paper 31048735 Received 1 1th August 1993 Accepted 20th September 1993
机译:J. CHEM. SOC. PERKIN TRANS. 1 1994 W. H. Perkin 在氧化苯胺获得紫薇时实际上做了什么?Otto Meth-Cohn * 和 Mandy Smith t 化学系,桑德兰大学,桑德兰 SR I 3S0,英国 紫红色的文献结构已被证明是错误的。对珀金在其工厂生产的紫红色样品的分析表明,它们主要是两种吩嗪染料的混合物,即 3-氨基-2-甲基-5-苯基-7-(对甲苯基)吩嗪醋酸酯和 3-氨基-2,9-二甲基-5-苯基-7-(对甲苯基)吩嗪醋酸酯 1856 年,18 岁的威廉·亨利·珀金 (William Henry Perkin) 试图通过将 N-烯丙基甲酰胺(主要是对位)与重铬酸钾氧化二聚化来制造奎宁。奎宁的合成在88年后才实现。然而,当他同样氧化“苯胺”(来自粗煤焦油苯,因此含有甲苯)时,他获得了一种黑色沉淀,他能够从中提取出收率约为 5% 的紫色染料。这种染料被称为紫红色,并作为醋酸盐出售。这一非凡的事件标志着染料工业乃至化学工业的诞生。珀金确定,通过甲苯胺、二甲苯胺和其他苯胺的氧化获得了类似的染料,并且他原来的不纯苯胺比从纯苯胺中获得的染料更好。后一种产品被命名为假紫红色,他从中表明紫红色来源于配方C27H24N4的基础。他得出结论,紫红色是假紫红色(他给出了母体碱基 C,,H,,N,)和源自对甲苯胺和苯胺的三甲基衍生物的混合物。这些涉及方案 1 中概述的氧化偶联。然而, / 1I z 方案 1 紫红色 2 的假紫静脉文献结构的合成方法出现,没有任何证据迹象。它出现在《化学文摘》(1970 年首次出现,参考第 72 卷)中,5 和 1924 年第一版至今的戴尔斯权威圣经《颜色索引》中.6 Beilstein 没有给出一个 ~tructure,~Comprehensive Q x-Me 2 杂环化学给出了两个不同的,而关于吩嗪的权威 Weissberger 卷正确地引用了 Perkin 的经验公式,但提出了另一个错误的 ~tructure.~ 最近一篇关于吩嗪染料的评论提到结构 2“,而关于染色史的最新权威性工作将同样的错误结构归因于 Fischer 和 Hepp,这是一个普遍接受的谬误。结果与讨论 鉴于紫红色是由硝化和苯-甲苯混合物还原而得的粗苯胺氧化而成的,很明显,文献结构不可能是正确的,因为它意味着间甲苯胺是一个关键要求(方案2)。方案 2 紫红色文献结构的逆合成分析 因此,我们从 Zeneca$ 的 Perkin 收藏中获得了珀金工厂生产的紫红色样本,以及大英博物馆的另一个样本(由帝国理工学院捐赠,可能来自霍夫曼的收藏)。珀金评论说,染料具有惊人的稳定性,其他工人在将近100年后检查了1856年的染料样品,指出它是~n改变的.~*我们惊讶地发现染料基本上是一样的?部分满足桑德兰大学 B.Sc 学位的要求。1感谢Ken McGee先生在获得这种化合物方面的帮助。Perkin记录的燃烧分析数据。57 年后,化学家检查了珀金的材料样本,发现它在 110 OC 时失去了 16.1% 的重量,主要是水,而珀金在分析前严格干燥了他的材料。I3 直接插入质谱证实了假紫脉的几种甲基化同系物的存在,二甲基和三甲基衍生物产生最大的分子离子以及单甲基和四甲基类似物的小峰。使用异丁醇、10%乙酸水溶液和乙酸乙酯(6:1:3,v/v)的混合物对二氧化硅进行薄层色谱最有效,结果显示两种主要产物A和B,R值分别为0.45和0.52,以及一些非常少量的紫色染料。使用相同的洗脱液对硅胶进行快速色谱,对两种主要馏分进行复色谱,得到两种相当纯的紫色染料。帮助阐明紫脉结构的标准品:苯酚黄素和番夫拉宁 0.-为了帮助阐明结构,我们还检查了两种市售标准品的光谱,苯酚黄素 3 和沙夫拉宁 0 4(均来自 Aldrich,后者尽管声称纯度为 -95%,但相当不纯)。标准品的对称性允许通过使用 HH-COSY 和 HC-COSY 波谱以及进一步的解耦研究来随时分配其 NMR 谱图。7.85(9.51 7.85 (9.5) 0:i~.g] CI -7.75-7.9 [132.7] [其他: 137.3.1 37.9,138.5.159.1] 3 07.6q128.9) 7.7-8.qi32.21CI -4 'H NMR (J/Hz),f3C NMR] 紫红色成分 A 的结构 (RF 0.45) 5.By 对 1 维和 2 维 NMR 谱图和耦合数据的类似研究,我们现在将紫红色的这种主要成分的结构指定为 5 的乙酸盐。可以看出该分子来源于 2 个苯胺分子、1 个对甲苯胺分子和 1 个邻甲苯胺分子。值得注意的是,在光谱中,由于正交苯基和氨基取代基在 3 位和 7 位的屏蔽作用,标准品和紫红色组分 A 中 4/6 核的信号非常高。这些细胞核在紫红色成分中是不等效的,一个信号显示元偶联,另一个信号不显示,从而指示其中一个甲基取代基的位置。质子和碳光谱中分别只有一个质子,分别为-7.21/122 ppm,这支持了这一点。The extra J. CHEM. SOC. PERKIN TRANS. 1 1994 7.00(8.4)[131 .O] Me 2.20120.95) 7.67.8 1132.61 5 'H NMR (J/Hz) [I3C NMR] 对位偶联质子清楚地表明了其他甲基取代基在 N-苯基环中的位置。由于N-苯基环的去屏蔽作用,与苯沙芬素相比,组分A的2质子和4质子的低场质子信号支持了两个甲基取代物的相对配置。苯酚黄素显示阳离子的质谱分子离子 (m/z 287) 和中性物质自由基阳离子的较大分子离子 M -1。在m/z 273(M -N,10氮)和m/z 196(M -NPh)处有明显的强峰。组分A的质谱图符合上述结构,显示分子离子为M -MeC6H4NH离子的基峰(m/z390)和次强峰(m/z 284)。为了支持这种碎裂,m/z 106 处的峰对于离子 MeC6H4NH+ 很重要。紫红色组分B的结构(RF 0.52) 6.质谱和核磁共振数据证实,第二组分与第一种组分非常相似,但含有额外的甲基。从光谱中非常接近的相似性中可以明显看出,该组位于 1 位,而其他组位于组分 A 中,除了没有特征质子/碳信号和 2-质子的正交耦合(参见 5 和 6 的光谱)。同样清楚的是,该次要组分从 1 分子苯胺、1 个对甲苯胺分子和 2 个邻甲苯胺分子衍生出 2.6a18.21 7.7 Me 6'-H NMR (J/Hz)、f3-C NMR]。正如早期研究紫红色的化学家所认识到的那样,邻甲苯胺和对甲苯胺对于最有效染料的形成至关重要,并且在氧化偶联过程中显然具有更高的反应性。实验一般细节.-苯酚和黄嘌呤 0 从 Aldrich 获得并按供应使用。紫红色的样品是从Perkin收藏,Zeneca p.l.c.,Blackley,曼彻斯特和科学博物馆获得的。使用Merck 0.2 x J. CHEM. SOC. PERKIN TRANS. 1 1994 200 x 200 mm预包板(Art.5735)进行硅胶薄层,并用Janssen(0.0354.070 mm)的二氧化硅进行快速色谱。使用[2H,]甲醇作为溶剂,相对于内部四甲基硅烷,在JEOL GSX 270上记录NMR谱图。质谱通过直接插入在VG Trio 2000四极杆仪器上记录。微观分析数据由布鲁内尔大学的Medac Ltd提供。Mauveine.-材料按提供的方式进行检查。使用异丁醇-乙酸乙酯-乙酸水溶液(5%,v/v)以60:30:10(v/v)的比例进行色谱。两个不同的样本给出了相同的结果。对0.1 g样品进行快速色谱,使用相同的溶剂系统分别对两个主要馏分进行复色,并在检查前在5OoC的真空烘箱中彻底干燥所得材料(发现:C,67.2;H,6.3;N, 10.8.计算值 for [C27H25N4]+- [CH,CO2]--3H,O, C, 67.16;H,6.61;N,10.80%)。光谱细节记录在讨论中。致谢 我们感谢 Zeneca Specialities 和科学博物馆提供紫红色样本,感谢 Zeneca Specialties 档案管理员 Ken McGee 先生进行了非常有益的讨论,并感谢 Perkin 的孙子 Peter Kirk-patrick 先生,感谢他对进行这项研究的全心全意的支持和有用的背景材料。参考文献 R. B. Woodward 和 W. von E. Doering, J, Am. Chem. SOC., 1944,66, 849.2 W. H. Perkin, J. Chem. SOC., 1896,69,596 以及其中引用的参考文献。3 0.Fischer and E. Hepp, Chem. Ber., 1888,21,2617;1893,26, 1194;Liebigs Ann Chem., 1892,272,306.4 R. Nietzki, Chem. Ber., 1896,29, 1442.5 (a) Chem. Abstr., 1925, 9, 2567 (参见 A. Cobenzl, Oesterr.Chem- Ztg., 1925, 28, 25)。有趣的是,作者认识到紫红色含有 2 个邻甲苯胺分子、1 个对甲苯胺分子和 1 个氧苯胺分子。(二)结构的首次出现:Chem. Abstr., 1965, 72,28258a [ref. to E. Gurr, J.SOC.染色器颜色。, 1969,85(10), 473.本文不包含结构,摘要也不包含!然而,紫红色的结构在第八十年索引中显示为“Phenazenium3-amino-7-anilino-2,8-dimethyl-5-p-tolyl,sulphate”,并参考了本文。6 染料编号 50245,颜色索引,第 3 版,第 2 次修订版,Soc. Dyers & Colourists,Bradford,1992.In 1924 年紫红色的第一版是条目 846。7 Beilsteins Handbuch der Organischen Chemie, Verlag von J. Springer, Berlin, 1929, 12, 131;25, 397 (654);系统编号 1598。8 Comprehensive Heterocyclic Chemistry,主编 A. R. Katritzky 和 C. W. Rees,Pergamon Press,牛津,1984 年,第 1、3、18 卷;第3卷,第197页。9 G. A. Swan 和 D. G. L. Felton, Phenazines, Chemistry of Heterocyclic Compounds, ed. E. Weissberger, J. Wiley & Sons, New York, 1957, 159.10 N. Hughes, Phenazine, Oxazine, Thiazine and Sulphur Dyes, Rodd's Chemistry of Carbon Compounds, vol. IV, eds. S. Coffey and M. F. Ansell, 2nd edn., 1988, 403.11 A.S.特拉维斯,《彩虹制造者——西欧合成染料工业的起源》,利哈伊大学出版社,伯利恒,1993年,第268页。文献结构似乎是由古斯塔夫·舒尔茨(Gustav Schulz)发明的,他是第一个在他的Farbstofftabellen中制作所有已知染料的综合索引的人,这项工作早于并构成了颜色索引的基础。12 G. Schultz,Farbstofftabellen,Akademische Verlagsgesellschaft MBH,莱比锡,第 7 版,1931 年,第 1 卷,第 419 页(条目 971)。这是舒尔茨在这项工作中发现的最早版本。然而,该结构没有出现在 A. G. Green(根据 G. Schultz 和 P. Julius 的德语创立)的 A Systematic Survey of the Organic Colouring Matters, 2nd edn., 1904,232 (染料编号 593) 中。13 E. Hibbert, J. SOC. Dyers Colour., 1921, 37, 187.论文31048735 收稿日期: 1993年8月1日 录用日期: 1993年9月20日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号