首页> 外文期刊>Monthly weather review >Particle Kalman Filtering: A Nonlinear Bayesian Framework for Ensemble Kalman Filters
【24h】

Particle Kalman Filtering: A Nonlinear Bayesian Framework for Ensemble Kalman Filters

机译:Particle Kalman Filtering: A Nonlinear Bayesian Framework for Ensemble Kalman Filters

获取原文
获取原文并翻译 | 示例
       

摘要

This paper investigates an approximation scheme of the optimal nonlinear Bayesian filter based on the Gaussian mixture representation of the state probability distribution function. The resulting filter is similar to the particle filter, but is different from it in that the standard weight-type correction in the particle filter is complemented by the Kalman-type correction with the associated covariance matrices in the Gaussian mixture. The authors show that this filter is an algorithm in between the Kalman filter and the particle filter, and therefore is referred to as the particle Kalman filter (PKF). In the PKF, the solution of a nonlinear filtering problemis expressed as the weighted average of an ‘‘ensemble of Kalman filters’’ operating in parallel. Running an ensemble of Kalman filters is, however, computationally prohibitive for realistic atmospheric and oceanic data assimilation problems. For this reason, the authors consider the construction of the PKF through an ‘‘ensemble’’ of ensemble Kalman filters (EnKFs) instead, and call the implementation the particle EnKF (PEnKF). It is shown that different types of the EnKFs can be considered as special cases of the PEnKF. Similar to the situation in the particle filter, the authors also introduce a resampling step to the PEnKF in order to reduce the risk of weights collapse and improve the performance of the filter. Numerical experiments with the strongly nonlinear Lorenz-96 model are presented and discussed.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号