...
首页> 外文期刊>journal of applied polymer science >A new binary accelerator system for the sulfur vulcanization of natural rubber latex
【24h】

A new binary accelerator system for the sulfur vulcanization of natural rubber latex

机译:A new binary accelerator system for the sulfur vulcanization of natural rubber latex

获取原文

摘要

AbstractVulcanization of latex products are usually carried out at lower temperatures compared to dry rubber products. It has been suggested that, in latex vulcanization systems where thiourea is used as a secondary accelerator, it acts as a nucleophilic reagent facilitating the cleavage of the sulfur bonds in the primary accelerator like TMTD or CBS at lower temperature. But no conclusive proof is given to such a postulate. In the present study 1‐phenyl‐2,4‐thiobiuret (DTB II) and 1,5‐diphenyl‐2,4‐dithiobiuret (DTB III), which are more nucleophilic than thiourea and which vary in their nucleophilic reactivity, were studied as secondary accelerators along with tetramethyl thiuram disulphide (TMTD) andN‐cyclohexylbenzothiazyl sulphenamide (CBS) in the vulcanization of natural rubber latex. These binary systems were found to be very effective in reducing the optimum vulcanization time. Also it was noted that 1‐phenyl‐2,4‐dithiobiuret, which is more nucleophilic, is more reactive (as observed from the reduction in optimum cure time) as a secondary accelerator, indicating a nucleophilic reaction mechanism in the vulcanization reactions under review. The optimum dosages of the secondary accelerators required were derived. Physical properties like tensile strength, 300 modulus, and elongation at break of the latex vulcanizates were also studied. There is a definite advantage with respect to many of these properties for dithiobiuret systems compared to the systems containing TMTD alone or TMTD/thiourea. DTB III gives higher values in many of these physical properties than DTB II. Chemical characterization of the vulcanizates was also carried out to correlate the physical properties with the type of chemical crosslinks formed. © 1993

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号