首页> 外文期刊>Monthly weather review >Use of the Parcel Buoyancy Minimum (Bmin) to Diagnose Simulated Thermodynamic Destabilization. Part II: Composite Analysis of Mature MCS Environments
【24h】

Use of the Parcel Buoyancy Minimum (Bmin) to Diagnose Simulated Thermodynamic Destabilization. Part II: Composite Analysis of Mature MCS Environments

机译:Use of the Parcel Buoyancy Minimum (Bmin) to Diagnose Simulated Thermodynamic Destabilization. Part II: Composite Analysis of Mature MCS Environments

获取原文
获取原文并翻译 | 示例
       

摘要

Herein, the parcel buoyancy minimum (Bmin) defined in Part I of this two-part paper is used to examine physical processes influencing thermodynamic destabilization in environments of mature simulated mesoscale convective systems (MCSs). These convection-permitting simulations consist of twelve 24-h forecasts during two 6-day periods characterized by two different commonly occurring warm-season weather regimes that support MCSs over the central United States. A composite analysis of 22 MCS environments is performed where cases are stratified into surface-based(SB), elevated squall (ES), and elevated nonsquall (ENS) categories.Agradual reduction of lower-tropospheric B_(min) to values indicative of small convection inhibition, occurring over horizontal scales.100kmfromtheMCS leading edge, is a common aspect of each category. These negative buoyancy decreases aremost pronounced for the ES and ENS environments, inwhich convective available potential energy (CAPE) is greatest for air parcels originating above the surface. The implication is that the vertical structure of the mesoscale environment plays a key role in the evolution and sustenance of convection long after convection initiation and internal MCS circulations develop, particularly in elevated systems. Budgets of B_(min) forcing are computed for the nocturnally maturing ES and ENS composites. Though warm advection occurs through the entire 1.5-km-deep layer comprising the vertical intersection of the largest environmental CAPE and smallest environmental B_(min) magnitude, the net effect of terms involving vertical motion dominate the destabilization in both composites. These effects include humidity increases in air parcels due to vertical moisture advection and the adiabatic cooling of the environment above.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号