...
首页> 外文期刊>Computational Mechanics: Solids, Fluids, Fracture Transport Phenomena and Variational Methods >Phase-field modeling of brittle fracture with multi-level hp-FEM and the finite cell method
【24h】

Phase-field modeling of brittle fracture with multi-level hp-FEM and the finite cell method

机译:基于多级hp-FEM和有限单元法的脆性断裂相场建模

获取原文
获取原文并翻译 | 示例

摘要

The difficulties in dealing with discontinuities related to a sharp crack are overcome in the phase-field approach for fracture by modeling the crack as a diffusive object being described by a continuous field having high gradients. The discrete crack limit case is approached for a small length-scale parameter that controls the width of the transition region between the fully broken and the undamaged phases. From a computational standpoint, this necessitates fine meshes, at least locally, in order to accurately resolve the phase-field profile. In the classical approach, phase-field models are computed on a fixed mesh that is a priori refined in the areas where the crack is expected to propagate. This on the other hand curbs the convenience of using phase-field models for unknown crack paths and its ability to handle complex crack propagation patterns. In this work, we overcome this issue by employing the multi-level hp-refinement technique that enables a dynamically changing mesh which in turn allows the refinement to remain local at singularities and high gradients without problems of hanging nodes. Yet, in case of complex geometries, mesh generation and in particular local refinement becomes non-trivial. We address this issue by integrating a two-dimensional phase-field framework for brittle fracture with the finite cell method (FCM). The FCM based on high-order finite elements is a non-geometry-conforming discretization technique wherein the physical domain is embedded into a larger fictitious domain of simple geometry that can be easily discretized. This facilitates mesh generation for complex geometries and supports local refinement. Numerical examples including a comparison to a validation experiment illustrate the applicability of the multi-level hp-refinement and the FCM in the context of phase-field simulations.
机译:在断裂的相场方法中,通过将裂纹建模为由具有高梯度的连续场描述的扩散物体,克服了处理与锐裂纹相关的不连续性的困难。对于控制完全断裂相和未损坏相之间过渡区域宽度的小长度尺度参数,接近离散裂纹极限工况。从计算的角度来看,这需要精细的网格,至少在局部,以便准确解析相场剖面。在经典方法中,相场模型是在固定网格上计算的,该网格在裂纹预期扩展的区域中进行了先验细化。另一方面,这限制了将相场模型用于未知裂纹路径的便利性及其处理复杂裂纹扩展模式的能力。在这项工作中,我们通过采用多级 hp 细化技术来克服这个问题,该技术能够实现动态变化的网格,从而允许细化在奇点和高梯度处保持局部,而不会出现挂节点的问题。然而,在复杂的几何形状中,网格的生成,特别是局部细化变得不平凡。我们通过将脆性断裂的二维相场框架与有限单元法(FCM)相结合来解决这个问题。基于高阶有限元的FCM是一种不符合几何形状的离散化技术,其中物理域被嵌入到一个更大的简单几何虚构域中,可以很容易地离散化。这有助于为复杂几何形状生成网格,并支持局部细化。数值示例(包括与验证实验的比较)说明了多级 hp 细化和 FCM 在相场仿真环境中的适用性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号