...
首页> 外文期刊>Analytical and bioanalytical chemistry >Spatial distributions of the number densities of neutral atoms and ions for the different elements in a laser induced plasma generated with a Ni-Fe-Al alloy
【24h】

Spatial distributions of the number densities of neutral atoms and ions for the different elements in a laser induced plasma generated with a Ni-Fe-Al alloy

机译:Spatial distributions of the number densities of neutral atoms and ions for the different elements in a laser induced plasma generated with a Ni-Fe-Al alloy

获取原文
获取原文并翻译 | 示例
           

摘要

Spatially-resolved emission spectroscopy, including spatial devonvolution of the spectra, has been used to determine the three-dimensional distributions of the relative number densities of neutral atoms and ions of the elements present in a laser-induced plasma generated with a Ni-Fe-Al alloy. The method is based on the precise measurement of the local electronic temperature from Saha-Boltzmann plots constructed with Fe I and Fe II lines. The plasma was generated in air at atmospheric pressure using a 1064-nm Nd:YAG laser, and the emission was detected in the time window 3.0-3.5 mu s. The ionization fraction was very high (above 0.9) for the three elements in the sample, only decreasing behind the expanding plasma front. The relative number densities were obtained from the emissivities of selected elemental lines as well as the temperature. The error in this procedure was estimated, and it was found that it is largely due to the uncertainties in the transition probability values used. The spatial distributions of the total relative number densities of the three elements were shown to coincide within the error, a result which is relevant to the development of models of plasma emission used in analytical applications. The ratios of the total number densities of the elements in the plasma were compared to their concentration ratios in the sample; however, the relatively high errors in the relative number densities did not permit any definitive conclusions to be drawn about the stoichiometry of the laser ablation process.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号