首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Addition of acyl and sulfonyl hypohalites generated fromN-halogeno amides to alkenes: synthesis oftrans-vic-halogeno esters and their conversion tocis-1,2-diols
【24h】

Addition of acyl and sulfonyl hypohalites generated fromN-halogeno amides to alkenes: synthesis oftrans-vic-halogeno esters and their conversion tocis-1,2-diols

机译:N-卤代酰胺生成的酰基和磺酰基次卤酸盐与烯烃的添加:反式卤代卤代酯的合成及其转化托顺-1,2-二醇

获取原文
获取外文期刊封面目录资料

摘要

41J. CHEM. SOC. PERKIN TRANS. 1 1994 Addition of Acyl and Sulfonyl Hypohalites Generated from N-Halogeno Amides to Alkenes: Synthesis of trans-vic-Halogeno Esters and their Conversion to cis-I ,2-Diols Andre Goosen, Eric Hoffmann and Benjamin Taljaard * Department of Chemistry, University of Port Elizabeth, PO Box 1600, Port Elizabeth 6000, Republic of South Africa N-lodo-and N-bromo-p-nitrobenzamide have been shown to react with various organic acids to form the respective acyl or sulfonyl hypoiodites or hypobromites. These readily add to double bonds under mild conditions to yield trans-vic-halogeno esters. The stereochemistry, as well as the regioselectivity, of these additions have been rationalised in terms of an intermediate iodonium or bromonium ion.Alkaline hydrolysis of adducts from cyclohexene gave good yields of cis-cyclohexane-I ,2-diols, suggesting this methodology to be a viable alternative to the Woodward- Prevost synthesis of cis-1.2-diols. trans-uic-Halogeno esters have been synthesised by the reaction of silver(I),'- mercury(11)~ or thallium(1) salts of carboxylic acids and molecular halogens with alkenes. In addition, iodoacetoxylation of alkenes has been accomplished with the use of KIO,-I,-ACOH,~ NIS-AcOH7 and more recently by the Cull-promoted stereoselective iodination of alkenes.8 The more recent interest in the use of electrophilic additions of iodonium species to alkynes,' as well as the use of the addition products of NBS and diphenylacetic acid to alkenes in the synthesis of trans-chrysanthemic acid, lo prompted us to disclose our results on the addition of hypothalites generated from N-chloro-, N-bromo and N-iodo-p-nitrobenzamide in the presence of carboxylic and sulfonic acids to various alkenes.Results and Discussion Some years ago, we reported a novel synthesis of trifluoroacetyl hypoiodite,' demonstrated its use in aromatic iodination and, in a limited study, showed the reagent to add stereo- selectively anti- to the double bond of 5a-cholest-2-ene yielding 2~-trifluoroacetoxy-3a-iodo-5a-cholestane.Similarly, cyclohex- ene was shown to produce trans-2-iodocyclohexyl trifluoro- acetate. In order to extend the scope of this addition and to further study its mechanistic aspects, an excess of cyclohexene was treated with N-iodo-p-nitrobenzamide and trifluoroacetic acid in dichloromethane.After the reaction mixture had been stirred at ambient temperature for 2 h, work-up and preparative radial TLC (PRTLC) separation gave the uic-iodo ester in 67yield, based on N-halogeno amide (entry 1, Table 1). An increase in the reaction temperature had a minimal effect on the isolated yield of iodo ester (71) (entry 2), but a change in the solvent to chloroform (containing EtOH as stabiliser) and subsequent heating of the reaction mixture under reflux, resulted in an excellent yield of the uic-iodo ester (92) (entry 3). Similarly, cyclopentene and cyclooctene gave modest yields of the corresponding trans-iodotrifluoroacetates (entries 12, 13, 16and 17).The addition with triethylvinylsilane (entries 20 and 21) proceeded regioselectively with anti-Markownikov orientation, yielding the silyl iodo ester as the only product (80)isolated when the reaction was performed in chloroform under reflux conditions (entry 21). This regioselectivity may be attributed to hindrance by the relatively bulky triethylsilyl group of nucleophilic attack of the trifluoroacetate anion on the a-carbon of the intermediate, cyclic iodonium ion (Scheme 1). Since the Scheme 1 carbocation at the a-carbon atom is expected to be destabilised by the silicon atom, the latter being also known to stabilise p-cations as a result of electronic effects,13 the exclusive introduction of the trifluoroacetate moiety at the terminal carbon of the double bond is not entirely unexpected.3,3-Dimethylbutene, similarly on reaction with the N-iodo amide-TFA reagent, gave the corresponding iodo ester (45 and 74)as the sole product (entries 24 and 25). The regioselectivity in this case was attributed exclusively to steric hindrance of the bulky tert-butyl group to nucleophilic attack of the tri-fluoroacetate anion. Treatment of 5a-cholest-2-ene with the N-iodo-p-nitrobenz- amide-TFA reagent in chloroform for 2 h under reflux, gave on isolation by PRTLC, 3a-iodo-2~-trifluoroacetoxy-5a-cholest-ane (63) (entry 29). In dichloromethane at ambient temperature, a lower yield of (42) of adduct was obtained (entry 28). The stereoselective anti-addition of trifluoroacetyl hypoiodite was established from the 200 MHz 'H NMR half- band widths of the 2 H and 3 H proton resonances at 6 4.60 (1 H, s, W, 6 Hz) and 5.40 (1 H, s, W, 6 Hz) re~pectively,~~'~~'~ confirming our previous results.This compound was spectro- scopically identical with the uic-iodotrifluoroacetate synthesised from 5a-cholest-2-ene and trifluoroacetyl hypoiodite generated from silver(1) trifluoroacetate and iodine. As a further extension of the scope of the reaction, N-bromo- p-nitrobenzamide was synthesised 16,1 and treated with a series of alkenes in the presence of TFA to give the corresponding trans-uic-bromotrifluoroacetates(entries 4, 5, 15, 18, 19,22 and 26). As expected, the yields of the adducts obtained over the same reaction period were lower than those obtained for the corresponding iodo analogues.This is a consequence of the stronger N-Br bond, resulting in slower halogen exchange with 42 J. CHEM. SOC. PERKIN TRANS. 1 1994 Table 1 Synthesis of vicinal bromo and iodo esters by the addition of acyl and sulfonyl hypohalites to various alkenes" ~ ~ ~~~~~ Entry no. Alkene Product R X Yield() I I 67'vd 2 I 71b*hox.'OCOR I 923 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 ax "OCOR / Br 15b,d Br 70' I 71' I 58 I 89' I 31 '(40)' I 36: (38)' I 72 I 53b*d I 64' I 45'.' Br 51 ' I 20cTd I 51' Br 45 Br 35' I 56'sd I 80' Br 38' I 74' I 45c.d I 74 Br 40' I 38'vg I 42'yd I 63 " Refluxing CHCI,, 2 h.'Unoptimised yield of isolated pure product, based on N-halogeno amide. Yield based on alkene. CH2C12, ambient temperature. Yield based on organic acid. GC-MS analysis of the crude reaction mixture indicated cyclopentane-l,2-dioI(l)and cyclopentane iodohydrin (2) as ancillary products. the organic acid.'* This phenomenon was also reflected in the inability of N-chloro-p-nitrobenzamide-TFA to react with cyclohexene, even under relatively forcing reaction conditions (48 h in refluxing CHCl,). The same regioselectivity was observed for the N-bromo amide-TFA addition as noted for the corresponding N-iodoamide-TFA reagent (entries 22 and 26).A combination of acetic acid and N-iodo-p-nitrobenzamide was also allowed to react with a series of alkenes to form the corresponding trans-tic-iodoacetates, through what is surmised to be the intermediacy of an acetyl hypoiodite (entries 6,9, 14, 19, 23 and 27). These additions displayed the same regio- and stereo-selectivity as reported for this intermediate generated from K103-12-A~OH,19~20 NIS-ACOH,~ silver(1) acetate and iodine,2 or in the addition of iodine isocyanate to 3,3-di- methylbutene.2' The iodoacetoxylation of the N-iodoamide-AcOH reagent with 3,3-dimethylbutene as substrate formed a small amount (ca. 1)of a rearrangement product, 1-iodo-3-methylbut-2-ene, which could be detected by GC-MS analysis.It is suggested that it is formed by methyl migration from the tert-butyl group to the adjacent carbon atom generating a stable tertiary carbocation, which then undergoes elimination to give the Saytzeff product. Various carboxylic and sulfonic acids were found to add to cyclohexene in the presence of N-iodo-p-nitrobenzamide yielding trans-adducts in variable, isolated yields (entries 7-1 1). These yields, however, were not optimised. The adducts (entries 3,9 and 11) on treatment with aqueous sodium hydroxide, gave cis-cyclohexane-1 ,2-diol in moderate to good yields (75, 63 and 70, respectively) suggesting this methodology to be a viable alternative to the Woodward-Prevost protocol for the synthesis of cis-l,2-diols. In conclusion, the N-halogeno amides used are relatively stable, not obnoxious nor expensive and thus eliminate the use of expensive, potentially explosive and poisonous metal salts.An added advantage of the N-halogeno amides used in this study is the low solubility of the amide by-product in most organic solvents, thereby facilitating its removal in the work-up process. Separation of the halogeno esters may easily be effected by PRTLC or conventional preparative TLC. Experimental IR spectra were recorded on Perkin-Elmer 1600 FT-IR and 297 instruments. 'H NMR (200 MHz) and 13C NMR (50 MHz) spectra were recorded on a Varian Gemini 200 spectrometer. J. CHEM. SOC. PERKIN TRANS. 1 1994 Preparative radial TLC (PRTLC) was performed on a Harrison Research Model 7924T Chromatotron, equipped with a glass plate (24 cm diam.) coated with a circular layer of silica gel PF254 (1-2 mm thick and 7 cm diam.).Mass spectra (EI) were recorded on a Hewlett-Packard Model 5985A instrument, equipped with a direct insertion probe. GC-MS were obtained using a similar instrument, equipped with a Supelco BP5 30 m capillary column. Microanalyses were performed in the micro- analytical laboratories of the University of Port Elizabeth, SA. The syntheses of tert-butyl hypo~hlorite,~~.~~ N-iodo-p-nitro-benzamide,' N-bromo-p-nitrobenzamide,'6,1 ' N-chloro-p-nitrobenzamide 24 and 5a-cholest-2-ene have been reported previously. Reactions of N-Halogeno-p-nitrobenzamide-CarboxylicAcid with A1kenes.-General procedure.Equivalent amounts of N- iodo or N-bromo-p-nitrobenzamide (8-30 mmol) and the appropriate carboxylic acid in CH,Cl, (50 cm3) were treated with the alkene (8-70 mmol) and the mixture stirred in the dark at ambient temperature for 2 h. Alternatively, the mixture was heated under reflux using either CH,Cl, or CHC1, as solvent for the same period. The cold reaction mixture was filtered, washed with water (3 x 50 cm3), 20 aq. sodium carbonate (3 x 50 cm3), 0.1 mol dmp3 sodium thiosulfate (3 x 50 cm3) and water (3 x 50 cm3) respectively, and then dried (Na,SO,). The solvent was distilled off under reduced pressure to give the product, which was further purified by PRTLC using hexane-ethyl acetate (9 :1) as the mobile phase.The yields of iodo esters are summarised in Table 1. Spectral and analytical data for previously unreported compounds are given below. trans-2-Iodocyclooctyl trifluoroacetate. v,,,(CHC13)/cm~' 2930 and 1780; G,(CDCl,) 1.2-2.5 (12 H, m), 4.5 (1 H, m) and 4.9 (1 H, m) (Found: C, 34.7; H, 4.4. CloH,,F,IO, requires C, 34.31; H, 4.03). trans-2-lodocyclopentyl trfluoroacetate. v,,,(CHCl,)/cm-' 2975,2881 and 1783; G,(CDCl,) 1.7-2.5 (6 H, m), 4.3 (I H, m) and 5.5 (1 H, m); 8,-(CDC1,) 24.31, 27.85, 31.28, 38.19 and 89.76 (Found: C, 27.1; H, 2.6. C,H,F,IO, requires C, 27.29; H, 2.62). 2-Iod0-2-( triethylsily1)ethyl trfluoroacetate. v,,,(CHCl,)/ cm ' 2959, 288 1 and 1784; G,(CDCl,) 0.8 (6 H, q), 1.O (9 H, t), 3.4 (1 H, t) and 4.6 (2 H, d); G,(CDCl,) 5.31, 9.30, 11.08 and 72.56; mjz 353 (M' -29, 1.2), 269 (M' -113,O.l) and 225 (M' -157; 0.1) (Found: C, 31.2; H, 4.9.C,,H,,F,IO,Si requires C, 31.42; H, 4.75). 2- Iodo- 3,3 -dimethylbutyl trfluoroacetate. v,,,(CHCl,)/cm~' 2950, 2900 and 1780; GH(CDC1,) 0.9-1.5 (9 H, s), 4.2 (1 H, dd) 4.6 (1 H, dd) and 4.7 (1 H, dd); G,(CDCl,) 25.26, 41.49 and 67.22; rn/z 324 (M', l.l), 197 (M+ -127, 2.7), 211 (M' -113, 7.2), 127 (17) and 83 (100). trans-2-Bromocyclohexyl trifluoroacetate. v,,,(CHCl,)/ cm ' 3030,2947,2866 and 1782; d,(CDCl,) 1.15-2.5 (8 H, m), 4.00 (I H, m) and 5.05 (1 H, m); Gc(CDCI,) 25.14,27.24, 32.67, 37.43, 52.64, 82.08 and 98.13; m/z 195 (M+ -Br, 1273, 162 (20), 81 (100) and 69 (CF,, 90) (Found: C, 35.4; H, 4.1.C,H,,BrF,O, requires C, 34.93; H, 3.66). trans-2-Bromocyclopentyl trifluoroacetate. v,,,(CHCl,)/ cm-' 2977, 2878 and 1783; G,(CDCl,) 1.8-2.7 (6 H, m), 4.3 (1 H, m) and 5.5 (1 H, m);G,(CDCl,) 23.54, 31.29, 36.41, 53.06 and 88.01; m/z 261 (M', 0.1), 181 (M' -80,2), 148 (M+ -113,87)and 147(Mf -114,17). trans-2-Bromocyclooctyl trguoroacetate. vm,,(CHCl,)/cm-' 2932, 2863 and 1780; d,(CDCl,) 1.3-2.5 (12 H, m), 4.35 (1 H, ddd) and 5.4 (1 H, m); G,(CDCl,) 26.54, 27.13, 27.67, 33.48, 33.73, 57.19 and 85.82; m/z 223 (M+ -80, 373, 190 (M+ -113, 6), 109 (100) and 69 (CF,, 99) (Found: C, 40.0; H, 5.1. CloH1,BrF,O2 requires C, 39.62; H, 4.66). 43 2-Bromo-3,3-dimethylbutyl trifluoroacetate. v,,,(CHC13)/ cm-' 2971,2877 and 1786; G,(CDCl,) 1.2 (9 H, s),4.05 (1 H, dd), 4.62 (1 H, dd) and 4.72 (1 H, dd); G,-(CDCl,) 27.63,29.56,37.00, 64.24 and 7 1.15.2-Bromo-2-(triethylsilyl)ethyl trzjluoroacetate. v,,,(CHC13)/ cm-' 2958 and 1784; G,(CDCl,) 0.75 (6 H, q), 1.0 (9 H, t), 3.57 (1 H, dd), 3.75 (1 H, t) and 4.05 (2 H, m); G,-(CDCI,) 4.66,9.37, 48.01, 66.75,98.14 and 188. 2-Iodo-3,3-dimethylbutylacetate. v,,,(CHCl,)/cm -' 30 14, 2969, 2874 and 1734; GH(CDC13) 1.1 (9 H, s), 2.1 (3 H, s), 4.2 (1 H, dd), 4.35 (1 H, d) and 4.37 (1 H, d); Gc(CDC1,) 23.06, 30.85, 36.82, 50.68, 69.63 and 172.0; m/z 270 (M +,0.2), 2 10 (M' -60, 0.2) and 143 (M' -127, 4) (Found: C, 35.8; H, 5.6. CsH1510, requires C, 35.57; H, 5.60). l-Iodo-2,3- dimethylbut-2-ene (1 ) could be detected in the GC-MS of the crude mixture, m/z 210 (M+, loo), 195 (M' -15, 12) and 83 (M+ -127,49).2-Iodo-2-(triethylsilyl)ethylacetate. v,,,(CHCl,)/cm-' 30 14, 2958 and 1734; dH(CDC1,) 0.8 (6 H, q), 1.0 (9 H, t), 2.15 (3 H, s), 3.4 (1 H, dd), 4.30 (1 H, dd), 4.35 (2 H, m) and4.40 (1 H, dd); GC(CDC1,) 5.0 (CH,), 9.0 (CH,), 14.0 (CH,), 23.0 (CH) and 69.0 (CH,); rn/z 299 (M' -29,26), 268 (M' -60,0.2) and 201 (M+ -127, 4) (Found: C, 36.7; H, 6.8. Cl0H2,IO2Si requires C, 36.59; H, 6.45). Reactions of Cyclohexene with N-Iodo-p-nitrobenzamide in the Presence of Various Organic Acids. --General procedure. Cyclohexene (2.3 g, 28.2 mmol) was added to a solution of N- iodo-p-nitrobenzamide (4.12 g, 14.1 1 mmol) and the organic acid (14 mmol) in CH,Cl, (75 cm3). After being stirred in the dark at ambient temperature for 16 h, the mixture was filtered, washed with 20 aq.Na,CO, (3 x 50 cm3) and water (3 x 50 cm3). The dried organic layer (Na,SO,) was concentrated under reduced pressure to give the trans-uic-iodo ester. trans-2-Iodocyclohexyl heptafluorobutyrate. (89, based on acid); v,,,(CHCl,)/cm~' 3010, 2946, 2865, 1776 and 1529; G,(CDCI,) 1.2-2.6 (8 H, m), 4.15 (1 H, ddd) and 5.15 (1 H, dt); Gc(CDC1,) 17.60, 25.04, 28.20, 29.63, 32.36 and 83.30; m/z 422 (M+, 0.2), 295 (M' -127), 209 (M' -213,2), 127 (5) and 81 (100) (Found: C, 28.3; H, 2.6. C,oHloF,102 requires C, 28.46; H, 2.39). trans-2-Iodocyclohexyl rnethanesulfonate. v,,,(CHCl,)/cm~' 3022, 2945, 2864, 1528, 1449, 1358 and 1174; d~(CDc13) 1.2- 2.5 (8 H, m), 3.15 (3 H, s), 4.15 (1 H, ddd) and 4.7 (dt); G,-(CDCl,) 25.10, 28.10, 32.07, 34.79,41.27 and 86.65.trans-2-Iodocyclohexyl p-nitrobenzoate. v,,,(CHCl,)/cm-' 3015, 2943, 2863, 1723 and 1606; G,(CDCl,) 1.2-2.6 (8 H, m), 4.15 (1 H, ddd), 5.13 (1 H, dt), 8.25 (2 H, d) and 8.31 (2 H, d); Gc(CDC13) 25.68, 29.13, 32.80, 33.72, 39.95, 80.57, 125.57 and 132.92; m/z 375 (M', 3.373248 (M' -127,82.1), 209 (M' -166, 41.4), 208 (M' -167, 60.1), 167 (1.3), 150 (100) and 104 (47.2) (Found: C, 41.8; H, 4.0; N, 4.0. C,,H,,INO, requires C, 41.62; H, 3.76; N, 3.73). Reactions of Cyclohexyl Iodo Esters with Sodium Hydrox- ide.-trans-2-Iodocyclohexyl trifluoroacetate (2.82 g, 8.76 mmol) and sodium hydroxide (1.34 g, 33.75 mmol) in water (75 cm3) were heated under reflux for 24 h.The cooled solution was then saturated with NaCl and extracted with diethyl ether (3 x 100 cm3). The combined extracts were dried (Na,SO,) and evaporated under reduced pressure to give an oil, which on PRTLC separation (SiO,, CHCI,), gave starting material (710 mg, 25) and cis-cyclohexane-l,2-diol(750 mg, 75) which was identical with an authentic sample.26 Similarly, trans-2-iodocyclohexyl methanesulfonate and the corresponding toluene-p-sulfonate yielded 63 and 70 of the cis-l,2-diol respectively. Acknowledgements The authors thank the South African Foundation for Research Development (FRD) for financial assistance. References 1 L. Birckenbach, T. Goubeau and E. Berninger, Ber.Dtsch. Chem. Ges., 1932, 65, 1339. 2 C. V. Wilson, Org. Reactions, 1964, 9, 332. 3 D. G. Hey, G. D. Meakins and M. W. Pemberton, J. Chem. SOC. C, 1966, 1331. 4 E. Brunel, Bull. SOC. Chim. Fr., 1905,33, 392. 5 R. C. Cambie, R. C. Hayward, J. L. Roberts and P. S. Rutledge, J. Chem. SOC., Perkin Trans. I, 1974, 1858. 6 M. Adinolfi, M. Parrilli, G. Barone and L. Mangoni, Gazz. Chim. rtai., 1975,105, 1021. 7 M. Adinolfi, M. Parrilli, G. Barone, L. Laonigro and L. Mangoni, Tetrahedron Lett., 1976,40, 3661. 8 J. Barluenga, M. A. Rodriquez and P. J. Campos, J. Chem. SOC., Perkin Trans. I, 1990, 2807. 9 J. Barluenga, M. A. Rodriquez and P. J. Campos, J. Org. Chem., 1990,55,3104. 10 J.-P. Dulcere and J. Rodriquez, Synlett., 1992, 347.1 1 A. Goosen, J. Lovelock and B. Taljaard, J. S.Afr. Chem. Inst., 1975, 28, 235. 12 A. Goosen and B. Taljaard, J. S. Afr. Chem. Inst., 1975,28, 196. 13 M. F. Semmelhack and L. S. Ryono, J. Am. Chem. SOC., 1975, 97, 3873. J. CHEM. soc. PERKIN TRANS. 1 1994 14 F. W. Fowler,A. Hassnerand L. A. Levy, J.Am. Chem. SOC.,1967,89, 2077. 15 C. P. Forbes, A. Goosen and H. A. H. Laue, J. Chem. SOC.,Perkin Trans. I, 1974,2346. 16 C. R. HauserandW.B.Renfrow, Jr., J.Am. Chem. SOC., 1937,59,121. 17 S. Kajigaeshi, K. Murakawa, K. Asano and S. Fujisaki, J. Chem. SOC.,Perkin Trans. I, 1989, 1702. 18 J. R. Barnett, L. J. Andrews and R.M. Keefer, J. Am. Chem. SOC., 1972,94,6129. 19 M. Parrilli, G. Barone, M. Adinolfi and L. Mangoni, Gazz. Chim. Ital., 1974, 104, 835. 20 L. Mangoni, A. Adinolfi, G. Barone and M. Parrilli, Gazz. Chim. Ital., 1975,105,377. 21 A. Hassner, R. P. Hoblitt, C. Heathcock, J. E. Kropp and M. Lorber, J. Am. Chem. SOC., 1970,92, 1326. 22 H. M. Teeter and E. W. Bell, Org. Synth., Coll. Vol. 4, 1963, p. 125. 23 M. J. Minty and C. Walling, Org. Synth., 1971,49,9. 24 B. Altenkirk and S. S. Israelstam, J. Org. Chem., 1962,27,4532. 25 H. A. H. Laue, M.Sc. Dissertation, University of Port Elizabeth, 1966, p. 52. 26 C. A. Bunton and M. D. Carr, J. Chem. SOC.,1963,710. Paper 3/05021 A Received 18th August 1993 Accepted 27th August 1993
机译:41J. CHEM. SOC. PERKIN TRANS. 1 1994 N-卤素酰胺生成的酰基和磺酰基次卤酸盐与烯烃的添加:反式卤素酯的合成及其转化为顺式-I,2-二醇 安德烈·古森、埃里克·霍夫曼和本杰明·塔利亚德 * 伊丽莎白港大学化学系,邮政信箱 1600,伊丽莎白港 6000,南非共和国 N-lodo-和 N-溴对硝基苯甲酰胺已被证明与各种有机酸反应形成各自的酰基或磺酰基次碘酸盐或次溴酸盐。这些很容易在温和的条件下添加到双键中,以产生反式 vic-卤代酯。这些添加物的立体化学以及区域选择性已根据中间碘或溴离子进行了合理化。环己烯加合物的碱性水解得到了顺式环己烷-I,2-二醇的良好收率,表明该方法是Woodward-Prevost合成顺式-1.2-二醇的可行替代方案。反式卤素酯是由羧酸和卤素分子的银(I),'-汞(11)~或铊(1)盐与烯烃反应合成的。此外,烯烃的碘乙酰氧基化已经通过使用 KIO,-I,-ACOH,~ NIS-AcOH7 以及最近通过 Cull 促进的烯烃立体选择性碘化来完成。8 最近对碘烃的亲电加成以及NBS和二苯乙酸的加成产物在反式菊酸的合成中使用碘物质的兴趣,促使我们披露了在羧酸和磺酸存在下由N-氯、N-溴和N-碘对硝基苯甲酰胺生成的下酞酸盐添加到各种烯烃的结果。结果与讨论 几年前,我们报道了一种新型的三氟乙酰次碘酸盐合成方法,证明了其在芳香族碘化中的用途,并在一项有限的研究中展示了该试剂选择性地向 5a-胆甾-2-烯的双键添加立体选择性抗抗体,产生 2~-三氟乙酰氧基-3a-碘-5a-胆甾烷。同样,环己烯被证明可以产生反式-2-碘环己基三氟乙酸酯。为了扩大添加范围并进一步研究其机理方面,在二氯甲烷中用N-碘对硝基苯甲酰胺和三氟乙酸处理过量的环己烯。将反应混合物在室温下搅拌2小时后,根据N-卤代酰胺(表1)进行后处理和制备径向TLC(PRTLC)分离,得到收率为67%的uic-碘酯(条目1,表1)。反应温度的升高对碘酯的分离收率(71%)影响最小(条目2),但溶剂变为氯仿(含有EtOH作为稳定剂)以及随后在回流下加热反应混合物,导致uic-碘酯的优收率(92%)(条目3)。同样,环戊烯和环辛烯的相应反式三氟乙酸盐的产率适中(条目12、13、16和17)。与三乙基乙烯基硅烷(条目 20 和 21)的加成以反马尔科尼科夫取向进行区域选择性,在回流条件下在氯仿中进行反应时,碘甲硅烷酯是唯一分离的产物 (80%)(条目 21)。这种区域选择性可归因于三氟乙酸根阴离子对中间环碘离子的a-碳的亲核攻击的相对笨重的三乙基硅烷基团的阻碍(方案1)。由于方案 1 在 a-碳原子处的碳正离子预计会被硅原子破坏,硅原子也已知硅原子会由于电子效应而稳定 p-阳离子,13 在双键的末端碳处独家引入三氟乙酸酯部分并不完全出乎意料.3,3-二甲基丁烯,同样在与 N-碘酰胺-TFA 试剂反应时, 给予相应的碘酯(45和74%)作为唯一产物(条目24和25)。在这种情况下,区域选择性完全归因于笨重的叔丁基对三氟乙酸阴离子的亲核攻击的空间位阻。用 N-碘-对硝基苯甲酰胺-TFA 试剂在氯仿中回流处理 5a-胆甾-2-烯 2 小时,通过 PRTLC 分离,3a-碘-2~-三氟乙酰氧基-5a-胆甾烷 (63%)(条目 29)。在环境温度下的二氯甲烷中,加合物的收率较低(42%)(条目28)。在6 4.60 (1 H, s, W, 6 Hz)和5.40 (1 H, s, W, 6 Hz)的2 H和3 H质子共振的200 MHz 'H NMR半带宽度上建立了三氟乙酰次碘石的立体选择性抗加成,~~'~~'~证实了我们之前的结果.该化合物在光谱上与由5a-胆甾-2-烯和三氟乙酰次碘酸盐[由三氟乙酸银(1)和碘生成]合成的uic-碘三氟乙酸盐相同。作为反应范围的进一步扩展,合成了N-溴对硝基苯甲酰胺16,1,并在TFA存在下用一系列烯烃处理,得到相应的反式-uic-溴三氟乙酸盐(条目4,5,15,18,19,22和26)。正如预期的那样,在同一反应期间获得的加合物的产率低于相应碘类似物的产率。这是较强的 N-Br 键的结果,导致与 42 J. CHEM. SOC. PERKIN TRANS. 的卤素交换速度较慢。1 1994 表1 在各种烯烃中加入酰基和磺酰基次卤酸酯合成邻溴和碘酯“ ~ ~ ~~~~~ 条目编号烯烃产品 R X Yield(%) I I 67'vd 2 I 71b*hox.'OCOR I 923 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 ax “OCOR / Br 15b,d Br 70' I 71' I 58 I 89' I 31 '(40)' I 36: (38)' I 72 I 53b*d I 64' I 45'.'Br 51 ' I 20cTd I 51' Br 45 Br 35' I 56'sd I 80' Br 38' I 74' I 45c.d I 74 Br 40' I 38'vg I 42'yd I 63 “ 回流 CHCI,, 2 h.'基于 N-卤素酰胺的分离纯产物的未优化收率。基于烯烃的收率。CH2C12,环境温度。基于有机酸的收率。粗反应混合物的GC-MS分析表明,环戊烷-l,2-二I(l%)和环戊烷碘醇(2%)是辅助产物。有机酸。* 这种现象还反映在N-氯对硝基苯甲酰胺-TFA无法与环己烯反应,即使在相对强迫的反应条件下(回流CHCl为48小时)。N-溴酰胺-TFA加成剂的区域选择性与相应的N-碘酰胺-TFA试剂(条目22和26)相同。乙酸和N-碘对硝基苯甲酰胺的组合也被允许与一系列烯烃反应,形成相应的反式碘乙酸酯,通过推测为乙酰次碘酸盐的中间体(条目6,9,14,19,23和27)。这些添加物显示出与由K103-12-A~OH,19~20 NIS-ACOH,~乙酸银(1)和碘,2或碘异氰酸酯与3,3-二甲基丁烯的添加中碘乙酰氧基化相同的区域和立体选择性。 以3,3-二甲基丁烯为底物的N-碘乙酰胺-AcOH试剂的碘乙酰氧基化反应形成了少量(约1%)的重排产物, 1-碘-3-甲基丁-2-烯,可通过GC-MS分析检测。有人认为,它是通过甲基从叔丁基迁移到相邻的碳原子而形成的,产生稳定的叔碳正离子,然后经过消除得到 Saytzeff 产物。发现各种羧酸和磺酸在N-碘对硝基苯甲酰胺存在下添加到环己烯中,以可变的分离收率产生反式加合物(条目7-1,1)。然而,这些产量并没有得到优化。用氢氧化钠水溶液处理的加合物(条目 3、9 和 11)以中等到良好的收率(分别为 75%、63% 和 70%)给予顺式环己烷-1,2-二醇,这表明该方法是用于合成顺式-l,2-二醇的 Woodward-Prevost 方案的可行替代方案。总之,所使用的N-卤代酰胺相对稳定,不令人讨厌也不昂贵,因此消除了昂贵、潜在爆炸性和有毒金属盐的使用。本研究中使用的N-卤素酰胺的另一个优点是酰胺副产物在大多数有机溶剂中的溶解度低,从而有助于在后处理过程中将其去除。卤素酯的分离可以很容易地通过PRTLC或常规制备型TLC来实现。在 Perkin-Elmer 1600 FT-IR 和 297 仪器上记录了实验红外光谱。'H NMR (200 MHz) 和 13C NMR (50 MHz) 光谱在瓦里安 Gemini 200 光谱仪上记录。J. CHEM. SOC. PERKIN TRANS. 1 1994 制备型径向 TLC (PRTLC) 在 Harrison Research 7924T 型色谱加速器上进行,该色谱加速器配备玻璃板(直径 24 厘米),玻璃板涂有硅胶 PF254 的圆形层(厚 1-2 毫米,直径 7 厘米)。质谱 (EI) 记录在配备直接插入探头的 Hewlett-Packard 5985A 型仪器上。GC-MS是使用配备Supelco BP5 30 m毛细管柱的类似仪器获得的。微观分析在南澳伊丽莎白港大学的微观分析实验室进行。次氯酸叔丁酯、~~.~~ N-碘对硝基苯甲酰胺、'N-溴对硝基苯甲酰胺、'6,1'N-氯对硝基苯甲酰胺24和5a-胆甾-2-烯的合成已有报道.N-卤素基-对硝基苯甲酰胺-羧酸与A1kenes的反应-一般程序。用烯烃(8-70mmol)处理等量的N-碘或N-溴对硝基苯甲酰胺(8-30mmol)和适当的羧酸在CH,Cl(50 cm3)中,并将混合物在室温下在黑暗中搅拌2小时。或者,使用CH,Cl或CHC1作为溶剂在回流下加热混合物。将冷反应混合物过滤,分别用水(3×50 cm3)、20%水溶液碳酸钠(3×50 cm3)、0.1 mol dmp3硫代硫酸钠(3 x 50 cm3)和水(3 x 50 cm3)洗涤,然后干燥(Na,SO,)。减压蒸出溶剂,得到产物,以己烷-乙酸乙酯(9 :1)为流动相,经PRTLC进一步纯化。碘酯的收率总结在表1中。以前未报道的化合物的光谱和分析数据如下。反式-2-碘环辛基三氟乙酸酯。v,,,(CHC13)/cm~' 2930 和 1780;G,(CDCl,) 1.2-2.5 (12 H, m), 4.5 (1 H, m) 和 4.9 (1 H, m) (发现: C, 34.7;H,4.4。CloH,,F,IO,需要 C,34.31;H,4.03%)。反式-2-氯代环戊基三氟乙酸酯。v,,,(CHCl,)/cm-' 2975,2881 和 1783;G,(CDCl,) 1.7-2.5 (6 H, m), 4.3 (I H, m) 和 5.5 (1 H, m);8,-(CDC1,) 24.31、27.85、31.28、38.19 和 89.76(发现:C、27.1;H,2.6。C,H,F,IO,需要 C,27.29;H,2.62%)。2-碘0-2-(三乙基硅基1)乙基三氟乙酸酯。v,,,(CHCl,)/ cm ' 2959, 288 1 和 1784;G,(CDCl,) 0.8 (6 H, q), 1.O (9 H, t), 3.4 (1 H, t) 和 4.6 (2 H, d);G,(CDCl,) 5.31, 9.30, 11.08 和 72.56;mjz 353 (M' -29, 1.2%), 269 (M' -113,O.l) 和 225 (M' -157; 0.1) (发现: C, 31.2;H, 4.9.C,,H,,F,IO,Si 需要 C, 31.42;H,4.75%)。2-碘-3,3-三氟乙酸二甲基丁酯。v,,,(CHCl,)/cm~' 2950, 2900 和 1780;GH(CDC1,)0.9-1.5(9 H,s),4.2(1 H,dd),4.6(1 H,dd)和4.7(1 H,dd);G,(CDCl,) 25.26、41.49 和 67.22;rn/z 324 (M', l.l%), 197 (M+ -127, 2.7), 211 (M' -113, 7.2), 127 (17) 和 83 (100).反式-2-溴环己基三氟乙酸酯。v,,,(CHCl,)/ cm ' 3030,2947,2866 和 1782;d,(CDCl,) 1.15-2.5 (8 H, m), 4.00 (I H, m) 和 5.05 (1 H, m);GC(CDCI)分别为25.14、27.24、32.67、37.43、52.64、82.08和98.13;m/z 195 (M+ -Br, 1273, 162 (20), 81 (100) and 69 (CF,, 90) (Found: C, 35.4;H,4.1.C,H,,BrF,O,需要C,34.93;H,3.66%)。反式-2-溴环戊基三氟乙酸酯。v,,,(CHCl,)/ cm-' 2977、2878 和 1783;G,(CDCl,) 1.8-2.7 (6 H, m), 4.3 (1 H, m) 和 5.5 (1 H, m);G,(CDCl,) 23.54、31.29、36.41、53.06 和 88.01;m/z 261 (M', 0.1%), 181 (M' -80,2), 148 (M+ -113,87) 和 147 (Mf -114,17).反式-2-溴环辛基三甲酰乙酸酯。vm,,(CHCl,)/cm-' 2932、2863 和 1780;d,(CDCl,) 1.3-2.5 (12 H, m), 4.35 (1 H, ddd) 和 5.4 (1 H, m);G,(CDCl,) 26.54、27.13、27.67、33.48、33.73、57.19 和 85.82;m/z 223 (M+ -80, 373, 190 (M+ -113, 6), 109 (100) 和 69 (CF,, 99) (Found: C, 40.0;H,5.1。CloH1,BrF,O2 需要 C, 39.62;H,4.66%)。43,2-溴-3,3-二甲基丁基三氟乙酸酯。v,,,(CHC13)/ cm-' 2971,2877 和 1786;G,(CDCl,) 1.2 (9 H, s),4.05 (1 H, dd), 4.62 (1 H, dd) 和 4.72 (1 小时, dd);G,-(CDCl,)27.63,29.56,37.00,64.24和7,1.15.2-溴-2-(三乙基硅基)乙基trzjluoroacetate。v,,,(CHC13)/ cm-' 2958 和 1784;G,(CDCl,) 0.75 (6 H, q), 1.0 (9 H, t), 3.57 (1 H, dd), 3.75 (1 H, t) 和 4.05 (2 H, m);G,-(CDCI,) 4.66,9.37,48.01,66.75,98.14 和 188。2-碘-3,3-二甲基丁基乙酸酯。v,,,(CHCl,)/cm -' 30 14, 2969, 2874 和 1734;GH(CDC13) 1.1 (9 H, s), 2.1 (3 H, s), 4.2 (1 H, dd), 4.35 (1 H, d) 和 4.37 (1 H, d);Gc(CDC1,)23.06、30.85、36.82、50.68、69.63和172.0;m/z 270 (m +,0.2%), 2 10 (m' -60, 0.2) 和 143 (m' -127, 4) (发现: C, 35.8;H,5.6。CsH1510,需要C,35.57;H,5.60%)。在粗混合物的GC-MS中可检测到l-碘-2,3-二甲基丁-2-烯(1 %),m/z 210 (M+, loo%)、195 (M' -15, 12)和83 (M+ -127,49).2-碘-2-(三乙基硅基)乙基乙酸酯.v,,,(CHCl,)/cm-' 30 14, 2958 和 1734;dH(CDC1,) 0.8 (6 H, q), 1.0 (9 H, t), 2.15 (3 H, s), 3.4 (1 H, dd), 4.30 (1 H, dd), 4.35 (2 H, m) 和 4.40 (1 H, dd);GC(CDC1,) 5.0 (CH,), 9.0 (CH,), 14.0 (CH,), 23.0 (CH) 和 69.0 (CH,);rn/z 299 (M' -29,26%), 268 (M' -60,0.2) 和 201 (M+ -127, 4) (发现: C, 36.7;H,6.8。Cl0H2,IO2Si需要C,36.59;H,6.45%)。环己烯与N-碘对硝基苯甲酰胺在各种有机酸存在下的反应。--一般程序。将环己烯(2.3g,28.2mmol)加入到N-碘对硝基苯甲酰胺(4.12g,14.1 1mmol)和有机酸(14 mmol)的CH,Cl溶液中,(75 cm3)。在室温下避光搅拌16小时后,过滤混合物,用20%水洗涤。Na,CO,(3 x 50 cm3)和水(3 x 50 cm3)。将干燥的有机层(Na,SO,)在减压下浓缩,得到反式碘酯。反式-2-碘环己基七氟丁酸酯。(89%,基于酸);v,,,(CHCl,)/cm~' 3010、2946、2865、1776 和 1529;G,(CDCI,) 1.2-2.6 (8 H, m), 4.15 (1 H, ddd) 和 5.15 (1 H, dt);GC(CDC1,)17.60、25.04、28.20、29.63、32.36和83.30;m/z 422 (M+, 0.2%), 295 (M' -127), 209 (M' -213,2), 127 (5) 和 81 (100) (发现: C, 28.3;H,2.6。C,oHloF,102 需要 C, 28.46;H,2.39%)。反式-2-碘环己基rnethanesulfonate。v,,,(CHCl,)/cm~' 3022、2945、2864、1528、1449、1358 和 1174;d~(CDc13) 1.2- 2.5 (8 H, m), 3.15 (3 H, s), 4.15 (1 H, ddd) 和 4.7 (dt);G,-(CDCl,)25.10、28.10、32.07、34.79、41.27和86.65.反式-2-碘环己基对硝基苯甲酸酯。v,,,(CHCl,)/cm-' 3015、2943、2863、1723 和 1606;G,(CDCl,) 1.2-2.6 (8 H, m), 4.15 (1 H, ddd), 5.13 (1 H, dt), 8.25 (2 H, d) 和 8.31 (2 H, d);GC(CDC13)25.68、29.13、32.80、33.72、39.95、80.57、125.57和132.92;m/z 375 (M', 3.373248 (M' -127,82.1), 209 (M' -166, 41.4), 208 (M' -167, 60.1), 167 (1.3), 150 (100) 和 104 (47.2) (发现: C, 41.8;H,4.0;N,4.0。C,,H,,INO,需要 C,41.62;H,3.76;N,3.73%)。环己基碘酯与羟基-2-碘环己基三氟乙酸钠(2.82g,8.76mmol)和氢氧化钠(1.34g,33.将75 mmol)的水(75 cm 3)在回流下加热24 h,然后用NaCl饱和冷却的溶液并用乙醚(3 x 100 cm 3)萃取。将合并的提取物(Na,SO,)干燥并在减压下蒸发,得到油,在PRTLC分离(SiO,,CHCI)时,得到起始原料(710mg,25%)和顺式环己烷-l,2-二醇(750mg,75%),其与真实样品相同.26同样,反式-2-碘环己基甲磺酸酯和相应的甲苯-对磺酸盐分别产生63%和70%的顺式-l,2-二醇。致谢 作者感谢南非研究发展基金会(FRD)的财政援助。参考文献 1 L. Birckenbach, T. Goubeau and E. Berninger, Ber.Dtsch.Chem. Ges., 1932, 65, 1339.2 C. V. Wilson, Org. Reactions, 1964, 9, 332.3 D. G. Hey, G. D. Meakins 和 M. W. Pemberton, J. Chem. SOC. C, 1966, 1331.4 E.布鲁内尔,公牛。SOC. Chim.Fr., 1905,33, 392.5 R. C. Cambie, R. C. Hayward, J. L. Roberts 和 P. S. Rutledge, J. Chem. SOC., Perkin Trans.我,1974 年,1858 年。6 M.阿迪诺尔菲、M.帕里利、G.巴罗内和L.曼戈尼,加兹。噗噗。RTAI., 1975,105, 1021.7 M. Adinolfi, M. Parrilli, G. Barone, L. Laonigro and L. Mangoni, Tetrahedron Lett., 1976,40, 3661.8 J. Barluenga, M. A. Rodriquez 和 P. J. Campos, J. Chem. SOC., Perkin Trans.我,1990 年,2807 年。9 J. Barluenga, M. A. Rodriquez 和 P. J. Campos, J. Org. Chem., 1990,55,3104.10 J.-P.Dulcere 和 J. Rodriquez, Synlett., 1992, 347.1 1 A.Goosen, J. Lovelock 和 B. Taljaard, J. S.Afr. Chem. Inst., 1975, 28, 235.12 A. Goosen 和 B. Taljaard, J. S. Afr. Chem. Inst., 1975,28, 196.13 M. F. Semmelhack 和 L. S. Ryono, J. Am. Chem. SOC., 1975, 97, 3873.J. CHEM. soc. PERKIN TRANS. 1 1994 14 F. W. Fowler,A. Hassnerand L. A. Levy, J.Am. Chem. SOC.,1967,89, 2077.15 C. P. Forbes, A. Goosen 和 H. A. H. Laue, J. Chem. SOC.,Perkin Trans. I, 1974,2346.16 C. R. HauserandW.B.Renfrow, Jr., J.Am. Chem. SOC., 1937,59,121.17 S. Kajigaeshi, K. Murakawa, K. Asano 和 S. Fujisaki, J. Chem. SOC.,Perkin Trans.我,1989 年,1702 年。18 J. R. Barnett, L. J. Andrews 和 R.M. Keefer, J. Am. Chem. SOC., 1972,94,6129.19 M. Parrilli、G. Barone、M. Adinolfi 和 L. Mangoni,Gazz。噗噗。意大利, 1974, 104, 835.20 L.Mangoni、A.Adinolfi、G.Barone和M.Parrilli,Gazz。噗噗。意大利, 1975,105,377.21 A. Hassner, R. P. Hoblitt, C. Heathcock, J. E. Kropp and M. Lorber, J. Am. Chem. SOC., 1970,92, 1326.22 H. M. Teeter 和 E. W. Bell, Org. Synth., Coll. Vol. 4, 1963, p. 125.23 M. J. Minty 和 C. Walling,Org. Synth.,1971,49,9。24 B. Altenkirk 和 S. S. Israelstam, J. Org. Chem., 1962,27,4532.25 H.A.H.Laue,M.Sc.论文,伊丽莎白港大学,1966年,第52页。26 C. A. Bunton 和 M. D. Carr, J. Chem. SOC.,1963,710.论文 3/05021 A 收稿日期 1993 年 8 月 18 日 录用日期 1993 年 8 月 27 日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号