首页> 外文期刊>Environmental Science & Technology: ES&T >Surface chemistry and dissolution kinetics of divalent metal carbonates
【24h】

Surface chemistry and dissolution kinetics of divalent metal carbonates

机译:Surface chemistry and dissolution kinetics of divalent metal carbonates

获取原文
获取原文并翻译 | 示例
       

摘要

A surface complexation model (SCM) for divalent metal carbonates (Ca, Mg, Sr, Ba, Mn, Fe, Co, Ni, Zn, Cd, and Pb) is developed based on new electrophoretic measurements and correlation between aqueous and surface reactions stability constants. This SCM postulates the formation of the following surface species: >CO{sub}3H{sup}0, >CO{sub}3{sup}-, >CO{sub}3Me{sup}+, >MeOH{sup}0, >MeO{sup}-, >MeOH{sub}2{sup}+, >MeHCO{sub}3{sup}0, and MeCO{sub}3{sup}- within the framework of a constant capacitance of the electric double layer. It can be used to describe the surface controlled dissolution kinetics of divalent metal carbonates and allows determination of the order of dissolution reactions with respect to rate-controlling protonated carbonate surface groups in acid solutions (>CO{sub}3H{sup}0) and hydrated metal groups (>MeOH{sub}2{sup}+) in neutral to alkaline solutions. The reaction order with respect to protonated carbonate groups increases from 2 for MnCO{sub}3 and ZnCO{sub}3 to 4 for NiCO{sub}3, whereas for hydrated surface metals, it augments from 2 for ZnCO{sub}3 to ~4 for MnCO{sub}3 and NiCO{sub}3 The dissolution rates at 5 ≤ pH ≤ 8 increase in the order Ni < Mg < Co < Fe < Mn < Zn < Cd < Sr < Ca ≈ Ba ≈ Pb and correlate nicely with water exchange rates from the aqueous solution into the hydration sphere of the corresponding dissolved cations. Such a correlation allows the generation for all carbonates of a model describing their dissolution/precipitation kinetics, including the effect of various ligands, provided that rate constants and their activation volumes for water exchange around Me(II)-ligand dissolved complexes are available.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号