首页> 外文期刊>Acta meteorologica Sinica >Numerical Assessing Experiments on the Individual Component Impact of the Meteorological Observation Network on the 'July 2000' Torrential Rain in Beijing
【24h】

Numerical Assessing Experiments on the Individual Component Impact of the Meteorological Observation Network on the 'July 2000' Torrential Rain in Beijing

机译:Numerical Assessing Experiments on the Individual Component Impact of the Meteorological Observation Network on the 'July 2000' Torrential Rain in Beijing

获取原文
获取原文并翻译 | 示例
       

摘要

In an effort to assess the impact of the individual component of meteorological observations (ground-based GPS precipitable water vapor, automatic and conventional meteorological observations) on the torrential rain event in 4-5 July 2000 in Beijing (with the 24-h accumulated precipitation reaching 240 mm), 24-h observation system experiments are conducted numerically by using the MM5/WRF 3DVAR system and the nonhydrostatic MM5 model. Results indicate that, because the non-conventional GPS observations are directly assimilated into the initial analyses by 3DVAR system, better initial fields and 24-h simulation for the severe precipitation event are achieved than those under the MM5/Litter_ R objective analysis scheme. Further analysis also shows that the individual component of meteorological observation network plays their special positive role in the improvement of initial field analysis and forecasting skills. 3DVAR scheme with or without radiosonde and pilot observation has the most significant influence on numerical simulation, and automatic and conventional surface meteorological observations rank second. After acquiring the supplement information from the other meteorological observations, the ground-based GPS precipitable water vapor data can more obviously reflect initial field assimilation and precipitation forecast. By incorporating the ground-based GPS precipitable water vapor data into the 3DVAR analyses at the initial time, the threat scores (TS) with thresholds of 1, 5, 10, and 20 mm-are increased by 1-8 for 6- and 24-h accumulated precipitation observations, respectively. This work gives one helpful example that assesses the impact of individual component of the existing meteorological observation network on the high influence weather event using 3DVAR numerical system.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号