首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Sodium hydride as a nucleophilic agent. Part 1. A new synthesis of 2,3prime;-biquinolyls
【24h】

Sodium hydride as a nucleophilic agent. Part 1. A new synthesis of 2,3prime;-biquinolyls

机译:氢化钠作为亲核剂。第 1 部分。2,3′-联喹啉的新合成

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKZNTRANS. 1 1992 Sodium Hydride as a Nucleophilic Agent. Part 1. A New Synthesis of 2,3'-Biquinolyls Alexander V. Aksenov," lgor V. Magedov and Yuri 1. Smushkevich Department of Organic Chemistry, Mendeleev Chemico -Technological Institute, Miusska ya pl9, Moscow 725820, USSR An effective synthesis has been developed for 2,3'-biquinolyls using nucleophilic addition of sodium hydride to quinoline and its alkyl derivatives. Although quinoline reacts with metallic sodium (molar ratio 1.2.3: 1) at 160 "C to yield 2,3'-biquinolyl (3040 yield),' Osborne and Staley have shown recently that its reaction with metallic calcium (molar ratio 0.45 : 1) at 220 "C yields 2,2'- biquinolyl(18 yield).2 In the present work, we have attempted 2. both to account for these findings and to develop new approaches to the synthesis of 2,3'-biquinolyls.By electron donation to quinoline, calcium generates a radical anion 2, for which the maximal spin density in the pyridine nucleus is localised in positions 1 and 4 (see Fig. 1). Steric hindrance hampers recombination of the radical anions 2 3.to give 1,l'- and 4,4'-diquinolyls, 2,2'-biquinolyls being formed preferentially as a result of favourable spatial and spin density factors. A similar mechanism has been postulated earlier for pyridine la + Na' -2 + Na' 2 + Na' I. .I 3 la+3--2Na' bsol; N N' L J 4 Na* dimerisation. (a) -0.0002 -0.0937 -0.3124 (b) -0.2153 5a 6a;:::1Scheme 2 Chain initiation 4.4386 -Fig.1 (a) Spin density distribution in the radical anion 2 as calculated 1. la+6 using the MNDO method; (b) charge distribution in the dianion 3 according to MNDO calculations Na+ 7 +Caa -a'-2. la+f -6+ la 2 Scheme 1 For the reaction with sodium, we propose the mechanism outlined in Schemes 2 and 3. Thus, as a result of its lower ionisation potential, sodium can reduce the primarily generated radical anion 2 to a dianion 3, the maximal charge in the pyridine nucleus ofwhich is localised on atoms 1, 4 and 3 see Fig. l(b). Although the charge in positions 1 and 4 is greater than that in position 3, position 1 is less nucleophilic as compared to 3 as a result of steric hindrance. Being a potent C-nucleophilic agent, the dianion 3 adds nucleophically to quinoline (see Scheme 2).A chain mechanism results. Chain initiation steps (1-4, Scheme 2) yield 2,3'- biquinolyl and the anion 6. The latter, being a strong C-nucleo- 8 Scheme 3 Chain elongation phile, adds to quinoline (step 1 in chain elongation) to generate the anion 7. The latter, acting as a hydride-ion donor, reacts with quinoline (step 2 in chain elongation), to produce the dimer 8 and to regenerate the anion 6 which participates in step 1 of the chain elongation (Scheme 3). The dimer 8 is, presumably, readily oxidized by air to 2,3'-biquinolyl5a. The validity of the above chain mechanism was established by dimerisation of the quinoline la to the dimer 8 with catalytic quantities of sodium.Thus, 40 mmol of quinoline when heated with 2 mmol of sodium at 160 "C for 2 h under argon and then exposed to air gave 2,3'-biquinoly1(36).? t Here and below, the yields are calculated for the quinoline added to the reaction mixture. The yields for the quinoline that has reacted are given in the Experimental section. 760 Table I Representative results in the dimerisation of quinolines Substrate R Product R Yield () la H 5a H 36 Ib 6-Me 5b 6-Me 32 IC 7-Me 5c 7-Me 32 Table 2 Effect of reaction conditions on dimerisation of quinoline to 2,3'-biquinolyl Reaction NaH No. time (h) (mol) Temp. ("C) Yield () 1.5 0.002 160 36 3.0 0.002 160 36 1.5 0.002 239 10 3.0 0.002 239 10 1.5 0.004 160 36 1.5 0.004 239 10 1.5 0.002 160 1.5 239 10 8 1.5 0.002 239 1.5 160 36 Compounds other than the anions 4 and 7 can act as hydride- ion donors in the reaction with quinoline, catalytic quantities of sodium hydride allowing generation of the anion 6* and subsequent dimerisation.Sodium hydride can also be used for dimerisation of alkyl substituted quinolines, and the yields are sometimes even higher than those with metallic sodium. For instance, dimerisation of 6- and 7-methylquinolines with sodium gives a 5 yield and with sodium hydride a 32 yield. The yields of 2,3'-biquinolyls (calculated for the quinoline added to the reaction mixture; see Table 1) are not high, 32- 36. In trying to establish the reason for this, we found that quinoline dimerisation to give compound 8 is an equilibrated exothermic reaction (see Table 2).The following results for 2,3'- biquinolyl support this. (1) Its yield is unchanged for reaction times 1.5 h, equilibrium being established within this time (experiments 1-4). (2) Its yield is unchanged with additional sodium hydride, the catalyst exerting no effect on the equili- brium (experiments 1 and 5,3 and 6). (3) The yield is decreased for reaction temperatures 160 "C, the equilibrium in exo- thermic reactions being shifted towards the starting compounds as the temperature is raised (experiments 1 and 4). (4) If the reaction temperature is varied (160 "C for 1.5 h and then 239 "C for 1.5 h or 239 "C for 1.5 h and then 160 "C for 1.5 h), the yields of 2,3'-biquinolyl depend on the temperature of the last 1.5 h, equilibrium being established during this period (experiments 7 and 8).Sodium ion complexation with the quinoline nitrogen is an important factor in the dimerisation process, no reaction occurring with 8-methylquinoline. The presence of a crown ether also inhibits dimerisation, as a result of competitive binding of sodium ions by the crown ether.? *Generation of the anion 6 from quinoline and sodium hydride at 30-60 "Cin HMPT has been de~cribed.~ t The inhibition of the amide anions addition because of its complexation with crown ether has already been described. J. CHEM. SOC. PERKIN TRANS. t 1992 Dimerisations were carried out both in the absence of solvent and in dimethylene glycol dimethyl ether, the product being easier to isolate in the latter case, but the yield dropping to 32.Experimental NMR spectra were recorded on a WP-200 Bruker spectrometer and chemical shifts are reported in ppm (6) relative to Me, as an internal standard. J Values are given in Hz. Mass spectra were obtained on a Varian CH 7 spectrometer. Quinolines were dried over molecular sieves (pore diameters 3 A,. 2,3'-Biquinolyl 5a.-Method A. A mixture of quinoline (10 g, 77.5 mmol) and sodium hydride (0.05 g, 2.1 mmol) was heated at 160 "C in an atmosphere of argon for 2 h. The reaction mixture was allowed to cool to room temperature in the air. Ether (10 ml) was added to the solid reaction mixture and the latter was filtered off (3.58 g, 36; 95 for the reacted quinoline), m.p.175-176 "C (benzene) (lit.,' m.p. 175-176 "C). Then the ether was removed and the residue distilled at 114 "C/17 mmHg to recover unchanged quinoline (6.2 9). Method B. A mixture of quinoline (10 g, 77.5 mmol) and sodium hydride (0.05 g, 2.1 mmol) in dry diethylene glycol dimethyl ether (10 ml) was heated at 160 "C in an atmosphere of argon for 3 h. The reaction mixture was allowed to cool to room temperature in the air, when addition of water (10 ml) precipitated yellow crystals (3.2 g, 32; or 95 for the reacted quinoline); d~(cDC13) 8.04 (1 H, d, J~H,~H8.55, 3-H), 8.2 (8 H, m,ArH),8.32(1 H,d,J3,,4,8.54,4-H),8.93(1 H,d,JZ,H,4,H2.28, 4'-H) and 9.76 (1 H, d, J~'H,~'H'2.28,4'-H).Then the filtrate was extracted with ether (3 x 50 ml). The combined extracts were dried (MgSO,), the ether was removed, and the residue distilled at 1 14 "C/l7 mmHg to recover unchanged quinoline (6.6 g). 6,6'-Dirnethyl-2,3'-biquinolylSb.-Method A. This compound was prepared as described for 2,3'-biquinolyl (Method A) from 6-methylquinoline (1 1 g, 77.5 mmol) and sodium hydride (0.05 g, 2.1 mmol); Yield 3.51 g (32; 90 for the reacted 6-methyl- quinoline), m.p. 206-207 "C (from benzene) (lit.,6 m.p. 206- 207 "C). Method B. This compound was prepared as described for 2,3'- biquinolyl (Method B) from 6-methylquinoline (1 1 g, 77.5 mmol) and sodium hydride (0.05 g, 2.1 mmol) in dry diethylene glycol dimethyl ether (10 ml); yield 3.3 g (30; 90 for the reacted 6-methylquinoline); G,(CD,),CO 2.57 (6 H, s, CH3), 7.66 (1 H, C, JT,H,B*H 8.54, J~*H,*H2.14, 7'-H), 7.67 (1 H, C, J~H,~H 2.14,7-H), 7.77 (1 H, d, JSH,~H8.54, JSHJH 2.14,5-H), 7.87 (1 H, d, J5,H,7*H2,14, 5'-H), 8.02 (1 H, d, J7",8,H 8.54, 8'-H), 8.08 (1 H, d, J~H,~H 8.54, 3-H), 8.40 (1 8.54,8-H), 8.26 (1 H, d, J~H,~H H, d, J~H,~H 2.44,4'-H) and 9.78 8.54,4-H), 8.99 (1 H, d, J~*H,~*H (1 H, d, J~*H,~*H2.44,2'-H); m/z = (70 ev) 284 (M', 100).7,7'-Dimethyl-2,3'-biquinolyl.-Method A. This compound was synthesized as described for 2,3'-biquinolyl (Method A) from 7-methylquinoline (1 1 g, 77.5 mmol) and sodium hydride (0.05 g, 2.1 mmol); yield 3.51 g (32; 90 for the reacted 7-methylquinoline), m.p.2 15-2 17 "C (from benzene). Method B. The compound was synthesized as described for 2,3'-biquinolyl (method B) from 7-methylquinoline (1 1 g, 77.5 mmol) and sodium hydride (0.05 g, 2.1 mmol) in dry diethylene glycol dimethyl ether (10 mi); yield 3.3 g (30, 90 for the reacted 7-methylquinoline); GH(CDC13) 2.61 (6 H, s, CH,), 7.40 (1 H, C, J5,,6~ 8.04,J6ff.3~2.01, 6-H), 7.44 (1 H, C, JS,H,6*H 8.41, J~'H.~'H 8.41, 5'-H), 7.87 (1 H,2.01, 6'-H), 7.76 (1 H, d, J~,H,~'H d, J~H,~H 2.01,8'-H), 7.96 (I H, d, 8.04,5-H), 7.95 (1 H, d, J~'H,~*H J~H.~H 2.01, 8-H), 8.25 (1 H, d,8.71, 3-H), 8.01 (1 H, d, J~H,~H J3ff.4H8.71,4-H),8.86(1 H,d,JZ,H,4tH l.92,4-H)and9.amp;9(1H,d, J. CHEM. SOC. PERKIN TRANS. 1 1992 J,.,.,., 1.91, 2rsquo;-H); G,(CDC13) 21.89 (9,CH,), 21-99 (q, CH,), 117.84(d, Arc), 125.38 (s, Arc), 125.92 (s, Arc), 127.22 (d, Arc), 128lsquo;24 (drsquo; 128*40(dy 128*78(drsquo; (drsquo;Arc), 129.29 (d, Arc), 131.58 (s, Arc), 134.17 (d, Arc), 136.76 (d, Arc), 140.31 (s, Arc), 140.53 (s, Arc), 148.62 (s, Arc), 148.72 (s, Arc), 149.86 (d, Arc) and 154.81 (s, Arc); m/z (70 eV) 284 (M+, 100) (Found: C, 84.9; H, 5.5;N, 9.6.Calc. for CZOHI6N2: C, 84.51; H, 5.63; N, 9.86). References 1 E. Carlier, A. Einhorn, Chem. Ber., 1980,23,2895. 2 A. G. Osborneand M. L. Staley, J. Chem. Rex, 1989, (S),388. 76 1 3 N. N. Melnikov, E. G. Novikov and B. L. Khaskin, Chemistry and Biological Actiuity of Dipyridyls and Their Deriuatiues, Khimiya,MOSCOW,1975, p. 7-8. 4 M. Natsume, S. Kunadaki, Yo. Kanda and K. Kiuchi, Terrahedron 1973, 2335. 5 A. F. Pozharzki, Basic Principles of Theorefical Chemistry Heterocycles, Khimiya, Moscow, 1985, p. 240. 6 A. G. Osborne, R. Green, I. H. Sadler and D. Reed, Mugn. Reson. Chem., 1989,27,4. Paper 1/06116J Received 3rd December 199 1 Accepted 1 7th December 199 1
机译:J. CHEM. SOC. PERKZNTRANS.1 1992 氢化钠作为亲核剂。第 1 部分。2,3'-联喹啉基的新合成 Alexander V. Aksenov,“ lgor V. Magedov 和 Yuri 1.Smushkevich 有机化学系,门捷列夫化学技术研究所,Miusska ya pl9,莫斯科 725820,苏联 已经开发了一种有效的合成方法,使用氢化钠与喹啉及其烷基衍生物的亲核加成法来合成 2,3'-联喹啉。虽然喹啉在160“C下与金属钠(摩尔比1.2.3:1)反应生成2,3'-联喹啉(3040%产率),但Osborne和Staley最近表明,它在220”C下与金属钙(摩尔比0.45:1)反应产生2,2'-联喹啉(18%产率).2在本工作中,我们尝试了2.既要解释这些发现,又要开发合成2,3'-联喹啉的新方法。通过向喹啉提供电子,钙产生自由基阴离子 2,吡啶核中的最大自旋密度位于位置 1 和 4(见图 1)。空间位阻阻碍了自由基阴离子2的复合,3.to 由于有利的空间和自旋密度因子,优先形成1,l'-和4,4'-二喹啉基,2,2'-联喹啉基。早先已经假设了吡啶 la + Na' -2 + Na' 2 + Na' I. 的类似机制。I 3 la+3--2Na'% \ N N' L J 4 Na* 二聚化。(a) -0.0002 -0.0937 -0.3124 (b) -0.2153 5a 6a;:::1方案 2 链起始 4.4386 -Fig.1 (a) 自由基阴离子 2 中的自旋密度分布,计算结果为 1.la+6 使用 MNDO 方法;(b) 根据MNDO计算的二阴离子3中的电荷分布Na+ 7 +Caa -[a]'-2。la+f -6+ la 2 方案 1 对于与钠的反应,我们提出了方案 2 和 3 中概述的机理。因此,由于其较低的电离电位,钠可以将主要产生的自由基阴离子 2 还原为二阴离子 3,其吡啶核中的最大电荷位于原子 1、4 和 3 上 [见图 l(b)]。尽管位置 1 和 4 的电荷大于位置 3 的电荷,但由于空间位阻,与 3 相比,位置 1 的亲核性较低。作为有效的 C 亲核试剂,二阴离子 3 以核形式添加到喹啉中(参见方案 2)。由此产生连锁机制。链起始步骤(1-4,方案2)得到2,3'-联喹啉基和阴离子6。后者是一种强 C 核核 8 方案 3 链伸长亲和物,添加到喹啉(链伸长的步骤 1)中生成阴离子 7。后者作为氢化物离子供体,与喹啉(链延伸的步骤2)反应,产生二聚体8并再生参与链延伸步骤1的阴离子6(方案3)。据推测,二聚体 8 很容易被空气氧化成 2,3'-联喹啉基5a。通过喹啉la与催化量的钠二聚化到二聚体8,建立了上述链机制的有效性。因此,40 mmol的喹啉在氩气下用2mmol钠在160“C下加热2小时,然后暴露在空气中,得到2,3'-联喹啉1(36%)。t 在这里和下面,计算添加到反应混合物中的喹啉的产率。反应的喹啉的产率在实验部分给出。760 表 I 喹啉二聚化的代表性结果 底物 R 产物 R 产物 R 收率 (%) la H 5a H 36 Ib 6-Me 5b 6-Me 32 IC 7-Me 5c 7-Me 32 表 2 反应条件对喹啉二聚化制 2,3'-联喹啉反应 NaH No.时间 (h) (mol) 温度 (“C) 产率 (%) 1.5 0.002 160 36 3.0 0.002 160 36 1.5 0.002 239 10 3.0 0.002 239 10 1.5 0.004 160 36 1.5 0.004 239 10 1.5 0.002 160 1.5 239 10 8 1.5 0.002 239 1.5 160 36 阴离子 4 和 7 以外的化合物在与喹啉的反应中可作为氢化物离子供体, 氢化钠的催化量允许产生阴离子 6* 和随后的二聚化。氢化钠也可用于烷基取代喹啉的二聚化,收率有时甚至高于金属钠的收率。例如,6-和7-甲基喹啉与钠的二聚化反应得5%的收率,氢化钠的得率为32%。2,3'-联喹啉的收率(以加入反应混合物中的喹啉计算;见表1)的收率不高,为32-36%。在试图确定其原因时,我们发现喹啉二聚化得到化合物 8 是一种平衡放热反应(见表 2)。以下 2,3'-联喹啉基的结果支持这一点。(1)其产率在1.5小时>反应时间内保持不变,在此期间建立平衡(实验1-4)。(2)其收率在添加氢化钠时保持不变,催化剂对平衡没有影响(实验1和5,3和6)。(3)当反应温度>160“C时,产率降低,随着温度的升高,外热反应的平衡向起始化合物转移(实验1和4)。(4)如果反应温度变化(160“C持续1.5小时,然后239”C持续1.5小时或239“C持续1.5小时,然后160”C持续1.5小时),则2,3'-联喹啉基的产率取决于最后1.5小时的温度,在此期间建立平衡(实验7和8)。钠离子与喹啉氮的络合是二聚化过程中的一个重要因素,与8-甲基喹啉没有反应。冠醚的存在也抑制了二聚化,这是由于冠醚对钠离子的竞争性结合。*喹啉和氢化钠在30-60“Cin HMPT的生成 6 已被描述~ t 由于酰胺阴离子与冠醚络合而抑制添加的酰胺阴离子的添加已被描述。J. CHEM. SOC. PERKIN 译.t 1992 在没有溶剂的情况下和在二亚二醇二甲醚中进行二聚化,在后一种情况下,产物更容易分离,但收率下降到32%。在 WP-200 布鲁克波谱仪上记录实验 NMR 谱图,并以 ppm (6) 为单位报告相对于 Me,% 的化学位移作为内标。J 值以 Hz 为单位。 质谱图是在瓦里安 CH 7 光谱仪上获得的。将喹啉在分子筛上干燥(孔径3 A,. 2,3'-联喹啉基5a.-方法A.将喹啉(10g,77.5mmol)和氢化钠(0.05g,2.1mmol)的混合物在160“C的氩气气氛中加热2小时。将反应混合物在空气中冷却至室温。向固体反应混合物中加入乙醚(10毫升),过滤掉后者(3.58克,36%;95%为反应喹啉),m.p.175-176“C(苯)(lit.,m.p.175-176”C)。然后除去乙醚,残留物以114“C/17mmHg蒸馏,以回收未改变的喹啉(6.2,9)。方法 B.将喹啉(10g,77.5mmol)和氢化钠(0.05g,2.1mmol)在干燥的二甘醇二甲醚(10ml)中的混合物在160“C下在氩气气氛中加热3小时。将反应混合物在空气中冷却至室温,当加入水(10毫升)析出黄色晶体(3.2克,32%;或95%为反应的喹啉);d~(cDC13) 8.04 (1 H, d, J~H,~H8.55, 3-H), 8.2 (8 H, m,ArH),8.32(1 H,d,J3,,4,8.54,4-H),8.93(1 H,d,JZ,H,4,H2.28,4'-H)和9.76(1 H,d,J~'H,~'H'2.28,4'-H)。然后用乙醚(3×50ml)提取滤液。将合并的提取物(MgSO,)干燥,除去乙醚,残余物以1 14“C/l7 mmHg蒸馏,回收未改变的喹啉(6.6 g)。6,6'-二乙基-2,3'-联喹啉基Sb.-方法A。该化合物由6-甲基喹啉(1 1 g,77.5 mmol)和氢化钠(0.05 g,2.1 mmol)制备为2,3'-联喹啉(方法A);收率3.51克(32%;90%为反应的6-甲基喹啉),熔点206-207“C(来自苯)(点亮,6个熔点206-207”C)。方法 B.该化合物由6-甲基喹啉(1 1 g,77.5 mmol)和氢化钠(0.05 g,2.1 mmol)在干燥的二甘醇二甲醚(10 ml)中制备,如所述的2,3'-联喹啉(方法B);收率3.3g(30%;反应的6-甲基喹啉为90%);G,[(CD,),CO] 2.57 (6 H, s, CH3), 7.66 (1 H, C, JT,H,B*H 8.54, J~*H,*H2.14, 7'-H), 7.67 (1 H, C, J~H,~H 2.14,7-H), 7.77 (1 H, d, JSH,~H8.54, JSHJH 2.14,5-H), 7.87 (1 H, d, J5,H,7*H2,14, 5'-H), 8.02 (1 H, d, J7“,8,H 8.54, 8'-H)、8.08(1 H, d, J~H,~H 8.54, 3-H)、8.40 (1 8.54,8-H)、8.26 (1 H, d, J~H,~H H, d, J~H,~H 2.44,4'-H) 和 9.78 8.54,4-H)、8.99 (1 H, d, J~*H,~*H (1 H, d, J~*H,~*H2.44,2'-H); m/z = (70 ev) 284 (M', 100%).7,7'-二甲基-2,3'-联喹啉基%.-方法 A.按照7-甲基喹啉(1 1 g,77.5 mmol)和氢化钠(0.05 g,2.1 mmol)的2,3'-联喹啉(方法A)的说明合成该化合物;产量 3.51克(32%;90%为反应的7-甲基喹啉),熔点2 15-2 17“C(来自苯)。方法 B.按照7-甲基喹啉(1 1 g,77.5 mmol)和氢化钠(0.05 g,2.1 mmol)在干燥的二甘醇二甲醚(10 mi)中合成2,3'-联喹啉(方法B)的化合物;收率3.3克(30%,90%为反应的7-甲基喹啉);GH(CDC13) 2.61 (6 H, s, CH,), 7.40 (1 H, C, J5,,6~ 8.04,J6ff.3~2.01, 6-H), 7.44 (1 H, C, JS,H,6*H 8.41, J~'H.~'H 8.41, 5'-H), 7.87 (1 H,2.01, 6'-H), 7.76 (1 H, d, J~,H,~'H d, J~H,~H 2.01,8'-H), 7.96 (I H, d, 8.04,5-H), 7.95 (1 H, d, J~'H,~*H J~H.~H 2.01, 8-H), 8.25 (1 H, d,8.71, 3-H), 8.01 (1 H, d, J~H,~H J3ff.4H8.71,4-H),8.86(1 H,d,JZ,H,4tH l.92,4-H)和9.&9(1H,d, J. CHEM. SOC. PERKIN TRANS. 1 1992 J,.,.,., 1.91, 2'-H);G,(CDC13) 21.89 (9,CH,), 21-99 (q, CH,), 117.84(d, 弧), 125.38 (s, 弧), 125.92 (s, 弧), 127.22 (d, 弧), 128'24 (d' 128*40(dy 128*78(d' (d'弧), 129.29 (d, 弧), 131.58 (s, 弧), 134.17 (d, 弧), 136.76 (d, 弧), 140.31 (s, 弧), 140.53 (s, 弧), 148.62 (s, 弧), 148.72 (s, 弧), 149.86 (d, 弧)和 154.81 (s, 弧);m/z (70 eV) 284 (M+, 100%) (发现: C, 84.9;H,5.5;N, 9.6.计算值 CZOHI6N2: C, 84.51;H,5.63;N,9.86%)。参考文献 1 E. Carlier, A. Einhorn, Chem. Ber., 1980,23,2895.2 A. G. Osborneand M. L. Staley, J. Chem. Rex, 1989, (S),388.76 1 3 N. N. Melnikov、E. G. Novikov 和 B. L. Khaskin,《双吡啶及其衍生物的化学和生物活性》,Khimiya,莫斯科,1975 年,第 7-8 页。4 米。夏目,S. Kunadaki,哟。Kanda 和 K. Kiuchi,Terrahedron 1973,2335。5 A. F. Pozharzki,《理论化学杂环的基本原理》,Khimiya,莫斯科,1985年,第240页。6 A.G.奥斯本、R.格林、I.H.萨德勒和D.里德,马格。共鸣。化学, 1989,27,4.论文 1/06116J 收稿日期 199 年 12 月 3 日 1 录用 1 199 年 12 月 7 日 1

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号