首页> 外文期刊>Combustion and Flame >Numerical simulation of premixed combustion processes in closed tubes
【24h】

Numerical simulation of premixed combustion processes in closed tubes

机译:Numerical simulation of premixed combustion processes in closed tubes

获取原文
获取原文并翻译 | 示例
       

摘要

Even with increasing capabilities of modern computers there is still a need for simplified models of turbulent combustion processes. In order to be useful in practical applications, the models must be capable of predicting such quantities as maximum pressure, maximum pressure rise, and the time of flame arrival at certain positions, quantities which are needed in the design process of safety measures in complex facilities. One possible approach to such problems is the use of a front tracking method. In the present study a front tracking method is used to describe the development of a turbulent flame zone due to convection and propagation/burning in a closed tube. The kinematic description of the flame propagation process makes it possible to eliminate the details of the chemical reactions involved, their effect being summarized in the turbulent burning velocity, which is assumed to be a function of time, turbulence intensity, and laminar burning velocity. The present model is the combination of a front tracking method with a Godunov-type solver for the Euler equations. Results are given for ethylene/oxygen and methane/air mixtures at different equivalence ratios and are compared to experimental data from the literature. While a detonation develops in the ethylene/oxygen mixture, the combustion process in the methane/air mixture proceeds as a comparatively slow deflagration. Both processes can be described with the same model and with reasonable accuracy. (C) 1998 by The Combustion Institute. References: 73

著录项

  • 来源
    《Combustion and Flame》 |1998年第4期|397-419|共23页
  • 作者

    Bielert U.; Sichel M.;

  • 作者单位

    Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109, USA, .;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 英语
  • 中图分类 燃料与燃烧;
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号