首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Petuniasterones. Part 2. Novel ergostane-type steroids fromPetunia hybridavilm. (solanaceae)
【24h】

Petuniasterones. Part 2. Novel ergostane-type steroids fromPetunia hybridavilm. (solanaceae)

机译:矮牵牛甾酮。第 2 部分。来自矮牵牛的新型麦角甾烷类固醇。(茄科)

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. I 1989 Petuniasterones. Part 2.' Novel Ergostane-type Steroids from Petunia hybrida Vilm. (Solanaceae) Carl A. Elliger," Mabry Benson, William F. Haddon, Robert E. Lundin, Anthony C. Waiss, Jr., and Rosalind Y. Wong U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94790 Four new compounds in the petuniasterone series were isolated from leaves and stems of Petunia hybrida. These all possess the A'74-diene-3-one structure and have a 7~oxygenated functionality. Compounds identified include the 17p-hydroxy derivative of petuniasterone A (9) and its 7-acetate (10) in addition to petuniasterone D (3), which is the orthoacetate of (22R,24R) -7a-22,24,25- tetrahydroxyergosta-1,4-dien-3-one as well as 12~-acetoxypetuniasteroneD 7-acetate (5).Seven unusually substituted ergostane-type steroids have previously been isolated from leaf and stem tissue of Petunia hybrida.' These petuniasterones appear to play a role in the defence of the plant against feeding by certain insects. We now report the isolation and structural characterization of four additional, related materials from the same source. (COSMe (1) R =H (2) R =Ac Chloroform extracts of plant material were fractionated, as previously described,' by initial separation on silica gel followed by preparative h.p.1.c. on several columns. After removal of petuniasterone A (1) and several of the other, more abundant, petuniasterones, it was possible to obtain four new compounds.The least polar of these, compound (3), which we have named petuniasterone D, is closely related to petuniasterone A (1). It has an unsubstituted orthoacetate system on its side chain, analogous to the (methy1thio)carbonyl orthoacetate at positions 22, 24, and 25 of compound (1). The U.V. spectrum of compound (3) shows a band at 246 nm which is consistent with the cross-conjugated dienone of ring and is essentially the same as that of compound (1). The i.r. spectrum shows the expected frequency (vmaX, 1 660 cm-') as in (1). The 'H n.m.r. (Table 1)and ' n.m.r. (Table 2) spectra of compounds (1) and (3) are essentially superposable except for signals associated with the pendant group of the ortho ester moiety. In com- pound (3) the orthoacetate methyl is associated with a 3-proton singlet at 6, 1.56 in the 'H n.m.r.spectrum and with 13C signals at 6, 23.5 and 117.3 (CH, and C, respectively). The corresponding values for triethyl orthoacetate are 6, 1.37 (3 H, methyl), and 6, 20.4 and 114.3 (CH, and C)." In pseudrelone B, having similar functionality, the methyl protons of the orthoacetate appeared at 6, 1.78 and the corresponding carbons were at 6, 25.8 and 117.6.s The ex- cellent correspondence of the characteristic proton couplings in compounds (1) and (3) is significant evidence that identical stereochemical configuration pertains. The n.m.r. spectral shifts and couplings in the corresponding acetates (2) and (4) confirms this point, especially with regard to the a-configuration of the 7-hydroxy substituent.Compound (5) has two acetoxy groups. One of these must be at position 72 as is indicated by comparison of the 'H n.m.r. signals of the 6~ and 6p protons in this compound with those of acetate (4). Partial methanolysis of diacetate (5) gave acetate (6) Me which has a free 7a-OH and which shows the complex and highly characteristic coupling pattern for the hydrogens attached to C-6 cf: compounds (1) and (3), Table 11. The assignment of the second acetoxy group of compound (5) to position 12 was facilitated by the observation that the I3CH, signal at 6 ca. 39 for (3) is no longer present, being replaced by the ,CH signal at 6 74.6. Confirmatory evidence is provided by the magnitude and direction of the substituent effect of the OAc group upon the chemical shifts of carbons in its vicinity.Iida et aL6 have reported A6 of ca. -6, -7, and -9 p.p.m. for carbons 9, 14, and 17 respectively and ca. +5 and +2 p.p.m. for carbons 11 and 13 in methyl 12a-acetoxy-5~-cholanoateus. the unsubstituted compound. We observe similar differences between compounds (4) and (5) or (6). The effect (+0.08 p.p.m.) reported for a 12a-acetoxy group upon the 'H chemical shift of 18-H3 'correlates satisfactorily with our data. Although the geometry of the C-19 methyl group is somewhat altered as a 144 J. CHEM. SOC. PERKIN TRANS. I 1989 Table 1. 'H N.m.r. data' Compound H (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 1 7.08 C7.111 7.02 d (10) 7.08 d (10) 7.08 d (10) 6.96 d (10) 6.95 d (10) 7.07 d (10) 7.02 d (10) 7.10 C7.061 7.10 d (10) 7.08 d (10) d (10) d (10)2 6.24 6.42 6.22 dd 6.25 dd 6.26 dd 6.25 dd 6.23 dd 6.25 dd 6.23 dd 6.22 6.48 6.26 dd 6.26 dd dd (10, 2) (10, 2) (10, 2) (10, 2) (10, 2) (10, 2) (10, 2) (10, 2) dd (10, 2) (10, 2) (10, 2) 4 6.13 C6.461 6.01 br d 6.14 br t 6.02 br d 6.03 br d 6.14 br t 6.00 d (2) 6.00 br s 6.14 C6.441 6.02 br s 6.00 d (2) br t (ca.2) (ca. 2) (ca. 2) (ca. 2) (ca. 2) (ca. 2) br t (ca. 2) 63 2.50 2.62 2.60 d (14) 2.48 dd 2.60 d (13) 2.60 d (14) 2.50 dd 6-H 6.03 6-H 6.04 2.50 6.623 2.60 d (14) 6-H 6.03 dd (14, 3) (14, 3) (14, 3) dd (10, 2) dd (10, 2) dd (14, 3) dd (10, 2) 6P 2.75 C2.761 2.66 d (14) 2.74 ddd 2.65 d (1 3) 2.66 d (14) 2.76 ddd 2.74 2.74 2.66 d (14) ddd (14,3,2) (14, 3, 2) (14, 3,2) br d (14) 7 4.04 C4.181 5.05 br q 4.04 br s 5.06 br q 5.08 br s 4.06 s 6.23 dd 6.22 dd 4.06 4.24 5.08 br q 6.24 dd br s (ca.3) (ca. 3) (10, 2.5) (10, 2) br s (ca. 3) (10, 2.5) 8 2.26 br t 2.30 br t 2.32 br t (10) (9) (10) 12P 2.02 dt 2.04 m 2.03 dt 2.05 m 5.08 br s 5.07 br t 2.10 dt 4.09 br s 2.10 ddd (12.5, 4) (1 2.5, 4) (3) (13, 3.5) (13, 5, 4) 20 1.78' ca. 1.8 2.36 qd (520-22 4) (520-22 4) (774)22 4.21 c4.341 4.20 dt 4.20 dt 4.18 dt 4.16 td 4.18 td 4.20 dt 4.20 ddd 4.29 ddd 4.30 ddd 4.28 ddd dt (11.5, 4) (11, 4) (11, 5) (10, 4) (8, 4) (8, 4) (11, 5) (10, 7, 4) (11, 7, 4) (11, 7, 4) (10, 7, 4) C5.141 dt (11, 4) 23 1.47 1.50 d 1.50 d ca.1.6' C1.931 dd (J22 23 4) (8) (8) (522-2, 7) (14, 11) (J22-23 10) C2.151 dd (14, 4) 1.52' (J2 2-2 3 11.5) 18-H, 0.76 0.76 s 0.76 s 0.75 s 0.83 s 0.83 s 0.80 s 0.82 s 0.97 0.97 s 1.01 s C0.671 s l.lS s 19-H3 1.23 1.25 s 1.24 s 1.25 s 1:23 s 1.22 s 1.20' s 1.20's 1.22 1.26 s 1.20's 1.24's 1.22's 21-H3 0.96 0.95 d (7) 0.96 d (7) 0.97 d (7) 0.85 d (7) 0.86 d (7) 0.98 d (7) 1.02 d (7) 0.92 0.91 d (7) 0.90 d (7) 1.091 c1.121 d (7) d (7) 26-H3 1.30 1.31 s 1.30 s 1.30 s 1.30 s 1.30 s 1.31 s 1.32 s 1.33 1.33 s 1.34 s C1.351 s C1.441 s 27-H3 1.12 1.12' s 1.16's 1.17's 1.16's 1.16's 1.17's 1.18's 1.14' 1.14's 1.14's C1.251'~ l.lS's 28-H, 1.21 1.20's 1.20's 1.19's 1.18's 1.18's 1.20's 1.18' s 1.22' 1.20's 1.20's 1.20's 1.22's COSMe 2.3 1 2.31 s 2.32 2.31 s C2.281 s C2.251 s CH2C0 3.04 + 3.04 d 3.01 + 3.02 d 2.78 d 3.10 (1413 3.07 (141, (141,C3.44 + 3.10 d d (14) 3.07 d 2.90 d 3.461 (14) C3.451 s (14) (14)each d (14)OAc 2.00 s 2.00 s 2.03 s, 2.04 s 1.98 s 2.08 s Ortho-1.56 s 1.56 s 1.54 s 1.56 s 1.56 s 1.57 s acetate C02Me 3.72 s F Values in CDCl, except in brackets 2H,pyridine: coupling constants (Hz) in parentheses. Values obtained by stepwise decoupling.'Values may be interchanged. consequence of the A-ring dienone, the small substituent effect group without elimination of the group (OH or OAc) at C-7 to (-0.02 p.p.m.) upon its chemical shift is also in agreement with yield triene (8). This lability is not unusual since these that shown by more typical steroids having 12~acetoxy groups.substituents are adjacent to a position from which a proton may It may be noted that those examples for the alternative 11-, 15, be easily abstracted.' However, shift comparisons between or 16-position of acetoxylation exhibit substantially different triene (8) and the corresponding non-hydroxylated triene (7) effects upon their respective angular methyl groups. were also in agreement with reported values for 3Csubstituent It was not possible to effect hydrolysis of the 12-acetoxy effects in the androstane series9 and for bile acids.6 lo J. CHEM. SOC. PERKIN TRANS. I 1989 145 Table 2. 13CN.m.r. datau Compound Carbon (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 1' 155.6, CH 155.2, CH 155.7, CH 155.2, CH 154.3, CH 154.7, CH 153.0, CH 152.6, CH 155.7, CH 155.3, CH 2' 127.6, CH 127.7, CH 127.6, CH 127.7, CH 128.0, CH 128.0, CH 128.1,* CH 128.2," CH 127.6, CH 127.7, CH 3 185.6, C 185.7, C 185.6, C 185.8, C 185.6, C 185.5, C 186.4, C 186.4, C 185.6, C 185.7, C 4' 127.1, CH 126.6, CH 127.1, CH 126.6, CH 126.8, CH 127.4, CH 123.7, CH 123.8, CH 127.1, CH 126.6, CH 5' 164.5, C 163.9, C 164.6, C 163.9, C 163.1, C 163.8, C 162.6, C 162.5, C 164.6, C 163.9, C 6' 41.0, CH, 37.3, CH, 41.0, CH, 37.3, CH, 37.2, CH, 40.9, CH, 138.4, CH 138.1, CH 41.0, CH, 37.3, CH, 7' 69.5, CH 72.0, CH 69.5, CH 72.0, CH 71.5, CH 69.2, CH 127.6,* CH 127.7,' CH 69.1, CH 71.7, CH 8 38.5, CH 38.3,* CH 38.5, CH 38.4,* CH 37.8, CH 39.0, CH 38.1, CH 38.2, CH 40.8, CH 39.3, CH 9 44.4, CH 45.1, CH 44.4, CH 45.2, CH 38.2, CH 37.9, CH 52.0,t CH 42.8,t CH 44.3,* CH 45.3,* CH 10 43.4,* C 43.2,t C 43.4,* C 43.2,T C 42.5, C 42.8, C 41.2, C 40.9, C 43.4 C 43.2, C 11 22.5, CH, 22.4, CH, 22.5, CH, 22.4, CH, 26.8, CH, 26.8, CH, 21.8, CH, 29.3, CH, 22.5, CH, 22.5, CH, 12' 39.0, CH, 38.8, CH, 38.9, CH, 38.8, CH, 74.6, CH 74.8, CH 39.3, CH, 72.3, CH 36.4, CH, 36.4, CH, 13 42.9,* C 43.0,t C 42.9," C 43.0,t C 45.3, C 45.2, C 43.3, C 47.4, C 48.3, C 48.3, C 14 49.9, CH 49.6, CH 49.9, CH 49.7, CH 42.7, CH 43.0, CH 48.3,T CH 41.5,T CH 44.2,* CH 44.1,* CH 15 23.8, CH, 23.8, CH, 23.8, CH, 23.8, CH, 23.0, CH, 23.1, CH, 23.8, CH, 23.2, CH, 23.1, CH, 23.3, CH, 16 27.2, CH, 27.0, CH, 27.2, CH, 27.1, CH, 26.2, CH, 26.4, CH, 27.2, CH, 26.2, CH, 33.5, CH, 33.4, CH, 17 52.0, CH 51.9, CH 52.0, CH 52.1, CH 43.9, CH 43.9, CH 53.2, CH 45.2, CH 85.1, C 84.9, C 18' 11.8, CH, 11.7, CH, 11.8, CH, 11.7, CH, 12.2, CH, 12.2, CH, 11.9, CH, 12.9, CH, 15.3, CH, 15.3, CH, 19' 18.3, CH, 18.4, CH, 18.2, CH, 18.5, CH, 18.1, CH, 18.0, CH, 20.0,: CH, 20.0,$ CH, 18.3, CH, 18.5, CH, 20' 39.8, CH 38.4," CH 39.7, CH 38.5,* CH 39.9, CH 39.7, CH 38.5, CH 39.0, CH 41.5, CH 41.7, CH 21 12.5, CH, 12.5, CH, 12.6, CH, 12.7, CH, 11.6, CH, 11.6, CH, 12.7, CH, 11.7, CH, 14.6, CH, 14.4, CH, 22 70.2, CH 70.1, CH 69.8, CH 69.8, CH 69.6, CH 69.6, CH 69.8, CH 70.4, CH 71.8, CH 71.7, CH 23' 30.3, CH, 30.3, CH, 30.2, CH, 30.3, CH, 30.1, CH, 30.1, CH, 30.2, CH, 31.8, CH, 31.5, CH, 31.3, CH, 24 82.9,t C 82.8,: C 82.5,T C 82.5,: C 82.4,* C 82.5,* C 82.5,s C 82.6,$ C 83.4,t C 83.5,t C 25 81.8,t C 81.7J C 81.3,'f C 81.3,: C Sl.l,* C 81.2,* C 81.3,s C 81.4,s C 82.1,f C 82.1,t C 26 19.9, CH, 19.9, CH, 19.9, CH, 20.0, CH, 19.9, CH, 20.0, CH, 20.5,$ CH, 20.4,: CH, 19.7, CH, 19.7, CH, 27 20.4,: CH, 20.4,s CH, 20.5,: CH, 20.5,$ CH, 20.5,T CH, 20.5,T CH, 20.7,: CH, 20.5,: CH, 20.2,: CH, 20.5,$ CH, 28 24.9,: CH, 24.9,s CH, 25.2,: CH, 25.2,4 CH, 25.1,T CH, 25.2,t CH, 25.2,: CH, 25.1,: CH, 24.8,$ CH, 24.8,$ CH, Ortho cstcr 115.3,C 115.3,C 117.3,C 117.3,C 117.3,C 117.3,C 117.3,C 117.3,C 114.9,C 115.0,C ,CH,CO 50.3m CH, 50.2, CH, 50.2, CH, 50.2, CH, l3COS 193.3, C 193.2, C 193.2, C 193.2.C SMe 12.0, CH, 12.0, CH, 12.0, CH, 12.0, CH, Acetate 170.2, C 170.3, C 170.2, C, 170.3, C 170.3, C 170.2, C Acet at c 21.0, CH, 21.1, CH, 21.1, CH,, 21.2, CH, 21.0, CH, 21.2, CH, Orthoacetate 23.5, CH, 23.5, CH, 23.4, CH, 23.5, CH, 23.5, CH, 23.5, CH, In p.p.m.from internal SiMe, for CDCl, solutions. Values with like superscripts in each column may be interchanged. Assigned by C H correlation spectroscopy in compounds (l),(2), (5),(7),(8),and (9),except for C-12 in (9). Comparative 'H n.m.r. shifts of 18-and 19-H, between trienes Compound (9)is similar to petuniasterone A (1) but bears an (7) and (8) were not definitive. We have assigned the sI-additional OH on a quaternary centre as is shown by the I3C configuration to the 12-acetoxy group of compounds (5)and (6) n.m.r. spectrum (6, 85.1) and by the absence of a proton signal on the basis of the multiplicity and magnitude of the 12-H signal gerninal to this group.Acetylation of (9)yields compound (lo), (6 5.07, t, J 3 Hz) indicative of two gauche proton couplings which is also found in the plant. The 'H n.m.r. spectra of this necessitating an axial orientation (x) for the acetoxy group. pair show the same comparative features for the C-6 protons as Me TMe (7) R = H (9) R = H (8) R = OH (10) R = AC do (1) us. (Z),and (3) us. (4). Treatment of compound (10) with methoxide gives triene (11) in which the thiol ester moiety has been converted into methyl ester. The Sp hydrogen of trienone (11) appears as a triplet (6 2.32, J 10 Hz) in the lsquo;H n.m.r. rCOzMe (11) spectrum thereby confirming the presence of the axial hydrogens at C-9 and C-14.The remaining OH must therefore be attached to C-17. In pentadeuteriopyridine solvent, the lsquo;H n.m.r. spectrum of compound (9) exhibits a quartet of doublets at 6 2.36 (J 7 and 4 Hz) for 20-H. Irradiation at this position caused the 2t-H, doublet to collapse to a singlet and the 22-H signal (6 5.14) to change from a double triplet to a double doublet (J 11 and 4 Hz) in agreement with the assigned position. Decoupling of the 22-H proton by irradiation at 6 5.14 resulted in simplification of the 20-H signal to the quartet (J 7 Hz). This result is in accord with the absence of a proton at C-17 which therefore must be the position of hydroxylation. In an effort to assign the stereochemistry at C-17 we considered the magnitude of the substituent-generated proton chemical-shift difference between the C-18 methyl groups of compounds (1) and (9).The observed shift difference attributable to the 17-hydroxy group (+0.21 p.p.m.) of (9) us. (1) in CDCI, is much greater than the values reported by Page rsquo; for either x or p 17-hydroxy substituents (0.06 and 0.03 p.p.m. respectively) in this solvent. In pentadeuteriopyridine, the observed C-18 methyl signal of compound (9) is shifted 0.51 p.p.m. to lower field compared with that in compound (I), but it must be noted that the C-18 methyl group of compound (1) appears at 6, 0.67 in this solvent, which is surprisingly higher. The reported chemical-shift differences of 18-H, for C- 17 CC-and p-hydroxy substituents in pentadeuteriopyridine are 0.00 and 0.20 p.p.m.respectively.rsquo; It appears that the additional oxygenation of the side chain may be influencing the association of pyridine with the C-17 hydroxy group. Clearly the large downfield shift in pentadeuteriopyridine of 22-H for compound (9) (A6 +0.85 p.p.m.) indicates that the side chain can assume a conformation in close proximity to the 17-OH which is possibly stabilized by hydrogen bonding. Where there is no C-17 hydroxy group, i.e. structure (I), 22-H is only shifted 0.13 p.p.m. downfield in pentadeuteriopyridine. Although the large magnitude of the substituent shift for the C-18 methyl implies close proximity to the 17-OH and thereby a p orientation for that group, the perturbing influence of the side chain lends significant uncertainty to the assignment.We therefore chose to subject compound (9) to X-ray analysis. The molecular stereochemistry of compound (9) with its 17p- OH group was unequivocally determined in this manner. The established molecular conformation with the atom-numbering system used in the X-ray investigation is shown in Figure 1 and its stereoscopic view is presented in Figure 2. The final atomic co-ordinates are listed in Table 3. The asymmetric centres C(20), C(22), and C(24) have the R configuration. Molecules of J. CHEM. SOC. PERKIN TRANS. I 1989 34q3* 39 Vlsquo;y15 21 ldquo;38 Figure 1. Perspective view of compound (9) with the crystallographic numbering scheme. Open bonds represent double bonds; small and large shaded circles represent oxygen and sulphur atoms, respectively Figure 2.Stereoscopic view of compound (9) compound (9) are weakly held together in the crystal structure by van der Waals interaction and two interniolecular hydrogen bonds 0(38) O(39) 2.94 and O(34) --O(40) 3.32 A. Experimental M.p.s were taken with a Fisher-Johns apparatus and are corrected. Optical rotations were obtained on a Perkin-Elmer model 241 automatic polarimeter at ca. 26deg;C using 1 concentration in chloroform solutions. 1.r. spectra were recorded on a Perkin-Elmer model 237 spectrophotometer and refer to chloroform solutions; U.V. spectra were taken on a Cary 2 19 spectrophotometer using solutions in methanol; rsquo;H n.m.r.spectra were obtained at 90 MHz on a Varian EM-390 instrument or at 200 MHz on a Nicolet NT-200, and ldquo;C n.m.r. spectra were taken at 50 MHz on the latter instrument. N.m.r. assignments were facilitated by decoupling methods and by use of two-dimensional proton-proton and carbon-proton correl-ation techniques.rdquo; Mass spectra were run using a VG Micromass 70/70HS instrument either by electron impact or by using ammonia chemical ionization. Listed relative abundances are those of the chemical ionization spectra. X-Ray intensities were collected with a Nicolet R3 automatic diffractometer at room temperature. Microanalyses were determined by Galbraith Enterprises, Knoxville, Tennessee. Silica gel Si60, 7amp;-230 mesh, was from E. Merck; Sephadex, LH-20, from Pharmacia Co.; h.p.1.c.columns were from Rainin J. CHEM. SOC. PERKIN TRANS. I 1989 Table 3. Atom co-ordinates (x lo4) for compound (9), with e.s.d.s in Y Y z 5 399(3) 7 908 -2 618(2) 6 122(2) 8 509(5) -2 638(2) 6 760(2) 7 528(5) -2 790(2) 6 581(2) 5 859(5) -2 885(2) 5 855(2) 5 262(5) -2 865(2) 5 709(2) 3 506(5) -2 927(2) 5 386(2) 2 853(5) -2 399(2) 4 634(2) 3 731(5) -2 291(2) 4 788(2) 5 505(5) -2 222(2) 5 156(2) 6 250(5) -2 749(2) 4 042(2) 6 386(5) -2 091(2) 3 658(2) 5 670(5) -1 583(2) 3 492(2) 3 903(5) -1 672(2) 4 281(2) 3 105(5) -1 759(2) 4 1 lO(3) 1339(5) -1 732(2) 3 451 (3) 1 202(5) -1 334(2) 3 255(2) 2 877(5) -1 138(2) 2 832(2) 3 676(6) -2 225(2) 4 525(3) 6 276(7) -3 345(2) 3 708(2) 3 362(5) -506(2) 3 869(3) 1971(6) -78(2) 3 292(2) 4 596(5) -175(2) 3 879(2) 5 607(5) 248(2) 3 566(2) 7 176(5) 441(2) 2 792(2) 7 037(6) 723(2) 2 791(3) 5 721(7) 1182(2) 2 540(3) 8 591(7) 957(2) 4 213(3) 8 183(6) 765(2) 2 562(2) 6 989(5) -317(2) 1976(2) 7 861(6) -785(2) 1 266(3) 6 820(6) -1 OOl(2) -198(3) 5 559(8) -952(3) 480( 1) 7 006(2) -609( 1) 1 250(2) 5 963(6) -1 434(2) 3 223(2) 7 944(4) -123(1) 2 216(1) 6 636(4) 195( 1) 2 793(1) 5 635(3) -582(1) 5 957(2) 2 923(4) -1 865(1) 7 414(2) 8 065(4) -2 832(2) 2 409(2) 2 845(4) -1 113(1) 0 2 228(8) 0 701(4) 1487(8) 122(3) 1411(5) 2 473( 1 1) 172(4) 717(8) 390(26) 401(7) Instruments, Alltech Associatcs, and Whatman, Inc.; solvents were h.p.1.c.grade and were pumped using an Altex/Beckman Model 110A pump.Detection was by U.V. at 254 nm using an Altex Model 150 monitor equipped with a 0.5 mm pathlength preparative cell. Plant Materid-Petunia hyhrida Vilm., commercial variety 'Royal Cascade,' was grown in outdoor beds in Albany, California. Leaf and stem material was harvested at intervals during the growing seasons of 1986 and 1987. Isolation Procedure.-This was carried out on freeze-dried plant material as previously described' by preliminary enrichment of the petuniasterone fraction on silica gel followed by preparative h.p.1.c. Columns and conditions were as follows: Rainin Dynamax Silica, 21.4 mm dia. x 250 mm with guard, 20 propan-2-01 in hexane; Alltech R-Sil C-18, 10 mm dia. x 250 mm, 30 water in acetonitrile; and Whatman Partisil-10 PAC, 9 mm dia.x 500 mm, 10 propan-2-01 in hexane. Products were eluted as indicated in Table 4. Table 4. Elution zone (ml) Compd. Dynamax silica R Sil C-18 PAC (3) 140-160 45-60 60-70 (5) 23G-265 3-3 100-120 (9) 26amp;310 28-34 2 10-240 (10) 21amp;250 2543 145-160 Compound (3), Petuniasterone D.-M.p. 209-21 2 "C (from heptane-EtOAc); a(h/nm) +47.7"(589), +49.6"(578), +55.3" (546), +79.4" (436), and +38.9" (365); v,,,, 3 450br (OH) and 1 660 cm-I (conj. CO); h,,,, 246 nm (log E 4.18); m/z485 (MH', 86) and 467 (MH' -H20, 12) (Found: C, 74.75; H, 9.0. C30H4405 requires MH', 485; C, 74.34; H, 9.15). Compound (5), 12a-AcetoxypetuniasteroneD 7-Acetate.-M.p. 241-243 "C (from heptane-EtOAc); x(h/nm) +60.3" (589), +62.6" (578), +69.8" (546), +105.8" (436), and +97.6" (365); v,,,.1 730 (OAc) and 1665 cm-' (conj. CO); Amax, 244 nm (loge 4.15);mlz 585 (MH+, 18), 525 (MH' -HOAc, 19), and 465 (MH' -2 HOAc, 6) (Found: C, 69.9; H, 8.8. C,,H4,0, requires MH', 585; C, 69.84; H, 8.27). Compound (9), 17P-HydroxypetuniusteroneA.-M.p. 145-147 "C with gas evolution (from heptane-EtOAc); x(h/nm +44.2" (589), +46.1" (578), +52.0" (546), +83.6" (436), and +82.6" (365); vmax,3 475br (OH), 1 685 (COSMe), and 1 665 cm-I (conj. CO); I,,,. 242 nm (log E 4.20); m/r 575 (MH', 13:;) and 557 (MH' -H20, 21) (Found: C, 66.4; H, 7.3; S, 5.5. C3,H4,07S requires MH', 575; C, 66.87; H, 8.07; S, 5.58). Compound (lo), 17p-Hydroxypetuniusterone A 7-Acetute.-a(h/nm) +12.4" (589), +12.7" (578), +13.5" (546), +14.9" (436), and -35.9" (365); vmaX,3 500br (OH), 1730 (ester), 1 685 (COSMe), and 1 665 cm-' (conj.CO); h,,,. 243 nm (log E 4.15); m/z 617 (MH', 84), 599 (MH' -H,O, 63), and 557 (MH' -HOAc, 5.3) (C34H4,O8S requires MH', 617). Petuniasterone A Acetate (2).-Petuniasterone A (1) (56 mg) was dissolved in acetic anhydride (5 ml) and the mixture was warmed at 100 "C for 15 h. Most of the Ac,O was removed at 80deg;C on a rotary evaporator and MeOH (5 ml) was added. After being kept for 1 h at room temperature, the mixture was taken to dryness and the residue redissolved in CH,C12 (1 ml). Chromatography of this solution on the PAC column gave pure acetate (2) (50 mg), retn.vol. 55-65 ml (10 propan-2-01- hexane), m/z 601 (MH', 83) and 541 (MH' -HOAc, 14) (C34H4807S requires MH', 601). Petuniasterone D Acetate (4).-Petuniasterone D (3) was converted into the acetate as described above. H.p.1.c. on the PAC column gave pure acetate (4), retn. vol. 50-58 ml (10 propan-2-ol-hexane). Acetylation of Compound (9).-Conversion of compound (9) to the 7-acetate was carried out as described above. H.p.1.c. on the RSil C-18 column, retn. vol. 3amp;38 ml (30 water-MeCN) gave pure monoacetate that was chromatographically and spectroscopically identical with compound (10). Conversion of Dienone (3) into Trienone (7).-Petuniasterone D (3) (27 mg) was dissolved in pyridine (1.0 ml) and methanesulphonyl chloride (0.1 ml) was added.The mixture was warmed to -50 "C for 15 min, and the development of a slight brown colour was observed. Most of the pyridine was 148 removed under reduced pressure and the remaining material was dissolved in MeOH (25 ml). After evaporation of MeOH, the crude product was dissolved in CH,CI, (1.0 ml) and the solution was filtered through a 0.5 pm PTFE filter. H.p.1.c. on the PAC column gave mainly one substance, retn. vol. 110-1 30 ml (10 propan-2-ol-hexane), showing a 'H n.m.r. signal at 6 3.00 (CDC1,; mesyl ester). To the mesyl ester was added 0.5~ NaOMe-MeOH (1 ml) and this mixture was warmed briefly to reflux then kept for 1 h at ambient temperature. Acetic acid (0.025 ml) was added and the solution was taken to dryness.The mixture was redissolved in CH,Cl, (1.0 ml), and the solution was filtered through a 0.5 pm PTFE filter and chromatographed on the PAC column to give pure trienone (7), retn. vol. 38-46 ml (10 propan-2-ol-hexane) (13 mg); h,,,, 223, 257, and 301 nm; m/z 467 (MH', 97) (C30H4104 requires MH', 467). Treutment of Diucetate (5) with Na0Me.-Compound (5) (20 mg) was warmed at reflux for 30 min with 0.5~NaOMe-MeOH (1 ml). Acetic acid (0.05ml) was added and the mixture was evaporated. The residue was dissolved in CH,Cl, (1 ml), and the solution was filtered through a 0.5 pm PTFE filter and chromatographed on a Whatman M-9 silica column, 9 mm dia. x 50 cm, with 20 propan-2-ol-hexane to give two products (6), retn. vol.52-62 ml and (S), retn. vol. 82-100 ml. Compound (6) resulted from methanolysis of the C-7 acetate, and had h,,,, 245 nm (log E 4.15); nz/z 543 (MH+, 15) and 483 (MH' -HOAc, 8.0) (C3,H4@, requires MH', 543). Compound (S), m.p. 270 "C (decomp.) (from hexane-Pr'OH), is the trienone resulting from elimination of the 7-acetate and methanolysis of the 12-acetoxy group; it had h,,,, 224,258, and 302 nm; nz/z 483 (MH', 49) (C30H4205 requires MH', 483). Treutment of Acetate (10) with Na0Me.-Compound (10) (20 mg) was treated with 0.5~NaOMe-MeOH (1 ml) as in the above case. After work-up, the mixture was chromatographed on the M-9 silica column to give two components. retn. vols. 58-66 ml (11) and 108-128 ml (20 propan-2-ol-hexane). The material of greater retention volume results from methanolysis of the C-7 acetate to the alcohol with simultaneous formation of methyl ester on the side chain, and had m/z 559 (MH', 11) and 541 (MH' -H,O, 9.2) (C32H4h08 requires MH+, 559).Compound (11) is the trienone resulting from elimination of the 7-acetoxy group with concomitant conversion of methyl thiolester into methyl ester; it had h,,,. 225, 251, and 298 nm; nzjr 541 (MH+, 53) and 523 (MHf -H,O, 8.5) (C32H440, requires MH', 541). Crystal Duta.-Compound (9) with solvent (ethyl acetate) of crystallization, C3,H,,0,S~0.5C4H,0,: M = 618.9, monoclinic, space group 12; a = 16.932(9), b = 8.514(3), c = 22.600( 12) A, = 98.79(3)", V = 3 219.7 A3, Z = 4, D, = 1.28 g crnp3,Do = 1.30 g ~m-~, F(OO0) = 1 335.9, ~(CU-K,) = 12.6 cm-'; colourless prismatic crystals were obtained from ethyl acetate by slow evaporation.Dutci Collection and Structure Rejineme1zt.-Intensity data were measured on a Nicolet R3 diffractometer with graphite- monochromatized Cu-K, radiation (h 1.5418 A) by the 8-20 scan technique with variable scan speed (4-30" min-') at room temperature. The lattice constants were refined by least-squares fit to setting angles of 20 independent reflections measured on the diffractometer. Intensity data were recorded as space group C2 with lattice constants u = 26.087, b = 8.514, c = 22.600 A, and p = 140.10". Two standard reflections were monitored periodically for crystal and instrument stability; no significant change in their intensities was noted during the course of the experiment. Intensity data were corrected for background, J.CHEM. SOC. PERKIN TRANS. I 1989 Lorentz, and polarization factors,'* but not for absorption or secondary extinction. The unit-cell dimensions and all hkl indices were transformed to space group 12; the crystal structure was solved by direct methods. Atomic co-ordinates, thermal parameters, and scale factors were refined by a 'blocked-cascade' full-matrix least-squares procedure with the SHELXTL13 program package on a Nova-3 computer. The function minimized was Crv(IF,I -IFc1)2,where w = 021FoI + 0.001lFo12-1.Scattering factors were from 'International Tables for X-ray Crystallography,' l4 those of oxygen and sulphur being corrected for anomalous dispersion.Least-squares refinement of atomic parameters of the 40 non-hydrogen atoms with anisotropic temperature factors converged at R = 0.15 1. Inclusion of 46 hydrogen atoms, whose positions were calculated, and of hydroxy groups, which were located on subsequent difference Fourier maps, in the structure-factor calculation with isotropic temperature factors and constraint on their positional parameters, reduced the R index to 0.141. Both the n.m.r. analysis and the observed density indicate that a solvate is present in the crystal structure. The n.m.r. spectrum of crystalline (9) dissolved in CHC1, indicated that there is half a molecule of ethyl acetate per formula unit of (9). The subsequent difference Fourier map revealed a cluster of four residual peaks, C(41), C(42), C(43), and C(44) with significantly high electron densities of 6.0,4.2,3.3, and 1.6 e A-3,respectively. These four peaks are incompatible with the geometry of possible solvate molecules; however, the distances C(41)-C(42) and C(42)-C(44) of 1.34 and 1.13 A, respectively, are close to those for C-0 and C=O.Inclusion of these peaks, with isotropic temperature factors and assuming that they were all carbon atoms, in the least-squares refinement reduced the R value to 0.063 and R, = 0.071 (375 parameters for 3 049 unique reflections with IF, 2 3olFoI in the range 3" I28 I 110"). At convergence, the four solvent atoms exhibit extremely high thermal vibrational motions, the average parameter shifts were less than 0.090, and the final difference Fourier synthesis excursion are within 0.7 e k3.The first five residual peaks are within the range (0.7-0.5 e k3)and (1.1-0.4 A) from the four solvent atoms.The structure refinement indicated that solvent of crystallization is present in the crystal structure but failed to establish the definite crystallographic position of the complete solvate molecule from the X-ray data presumably owing to poor intensity data. Crystals of compound (9),crystallized from ethyl acetate, appeared opaque and slightly fractured; nevertheless, they seemed to remain stable during data collection. Attempts to improve crystal quality by recrystallization from a variety of solvents were unsuccessful.There are no obvious intermolecular hydrogen bonds between the parent and solvent molecules; this perhaps accounts for the fact that the ethyl acetate molecules are partially disordered. An attempt to determine the absolute configuration by change of chirality in the structure refinement did not change R and R, significantly.* Acknowledgements We thank Ms. S. C. Witt for collection of n.m.r. data and Mr. R. England for mass spectral determinations. * Supplementary data (sce section 5.6.3 of Instructions for Authors, in the January issue). Tables of bond lengths and angles, anisotropic thermal parameters with their estimated standard deviations for the non-hydrogen atoms, and positional and thermal parameters of hydrogen atoms have been deposited at the Cambridge Crystallographic Data Centre.References 1 For Part 1, see C. A. Elliger, M. E. Benson, W. F. Haddon, R. E. Lundin, A. C. Waiss, Jr., and R. Y. Wong, J. Cliem. SOC.,Perkin Truns. 1, 1988, 711. J. CHEM. SOC. PERKIN TRANS. I 1989 2 A. I. Scott, lsquo;Interpretation of the Ultraviolet Spectra of Natural Products,rsquo; Pergamon Press, Oxford, 1964, p. 406. 3 lsquo;The Sadtler Standard N.M.R. Spectra,rsquo; Sadtler Research Labs., Inc., Philadelphia, 1974, p. 17336141. 4 lsquo;The Sadtler Standard Carbon-1 3 N.M.R. Spectra,rsquo; Sadtler Research Labs., Inc., Philadelphia, 1976, p. 718C. 5 D. A. H. Taylor, Pliyrochemistry, 1979, 18, 1574. 6 T. Iida, T. Tamura, T. Matsumoto, and F. C. Chang, Org. Mugn. Reson., 1983, 21, 305. 7 J. E. Page. Annu. Rep. NMR Spectrosc., 1970, 3, 149. 8 T. H. Lowry and K. S. Richardson, lsquo;Mechanism and Theory in Organic Chemistry,rsquo; Harper and Row, New York, 1976, pp. 358- 362. 9 J. W. Blunt and J. B. Stothers, Org. Mugn. Reson., 1977, 9, 439. 10 D. V. Waterhous, S. Barnes, and D. D. Muccio, J. Lipid Res., 1985, 26, 1068. 11 W. McFarlane and D. S. Rycroft, Annu. Rep. NMR Spectrosc., 1985, 16, 293. 12 Nicolet XTL Operation Manual, 1980, Nicolet Analytical Instru- ments Inc., 10041 Bubb Road, Cupertino, CA 95014, U.S.A. 13 G. M. Sheldrick, SHELXTL, lsquo;An Integrated System for Solving, Refining, and Displaying Crystal Structures from Diffraction Data,rsquo; University of Gottingen, Federal Republic of Germany, 1981. 14 lsquo;International Tables for X-ray Crystallography,rsquo; Kynoch Press, Birmingham, 1974, vol. 4. Received 17th November 1987; Paper 712033
机译:J. CHEM. SOC. PERKIN 译.I 1989 矮牵牛甾酮。第 2 部分。来自矮牵牛的新型麦角甾烷型类固醇。(茄科)Carl A. Elliger,“ Mabry Benson, William F. Haddon, Robert E. Lundin, Anthony C. Waiss, Jr., and Rosalind Y. Wong 美国农业部,农业研究服务,西部地区研究中心,800 Buchanan Street, Albany, CA 94790 从矮牵牛的叶子和茎中分离出矮牵牛甾酮系列中的四种新化合物。它们都具有 A'74-二烯-3-酮结构,并具有 7~氧合官能团。鉴定出的化合物包括矮牵牛酮 A (9) 及其 7-乙酸酯 (10) 的 17p-羟基衍生物,以及矮牵牛酮 D (3),后者是 (22R,24R) -7a-22,24,25-四羟基麦角甾-1,4-二烯-3-酮的原乙酸盐以及 12~-乙酰氧基矮牵牛甾 D 7-乙酸酯 (5)。以前已经从矮牵牛的叶和茎组织中分离出七种异常取代的麦角甾烷类固醇。这些矮牵牛甾酮似乎在保护植物免受某些昆虫的取食方面发挥了作用。我们现在报告了来自同一来源的另外四种相关材料的分离和结构表征。(如前所述,COSMe (1) R =H (2) R =Ac 植物材料的氯仿提取物通过在硅胶上进行初步分离,然后在几根色谱柱上进行制备型 h.p.1.c. 进行分馏。在去除矮牵牛甾酮A(1)和其他几种更丰富的矮牵牛甾酮后,可以获得四种新化合物。其中极性最小的化合物(3),我们将其命名为矮牵牛酮D,与矮牵牛酮A(1)密切相关。它的侧链上有一个未取代的原乙酸酯系统,类似于化合物 (1) 第 22、24 和 25 位的(甲基1硫代)原乙酸羰基酯。化合物(3)的U.V.光谱显示,在246 nm处有一个条带,该条带与环的交叉共轭二烯酮一致,并且与化合物(1)的条带基本相同。i.r.频谱显示预期频率(vmaX,1 660 cm-'),如(1)所示。化合物(1)和(3)的'H n.m.r.(表1)和'n.m.r.(表2)光谱基本上是可叠加的,除了与邻位酯部分的侧基相关的信号。在化合物(3)中,原乙酸甲酯在'H n.m.r.谱中与6,1.56的3质子单线态结合,在6,23.5和117.3(分别为CH和C)与13C信号结合。原乙酸三乙酯的对应值为6,1.37(3 H,甲基)和6,20.4和114.3(CH和C)。在具有相似官能团的 pseudrelone B 中,原乙酸的甲基质子出现在 6、1.78 和 6、25.8 和 117.6.s 化合物 (1) 和 (3) 中特征质子偶联的对应关系是相同的立体化学构型的重要证据。相应乙酸盐(2)和(4)中的n.m.r.光谱位移和偶联证实了这一点,特别是关于7-羟基取代基的a构型。化合物(5)有两个乙酰氧基。其中之一必须位于位置 72,如将该化合物中 6~ 和 6p 质子的 'H n.m.r. 信号与乙酸盐的 'H n.m.r. 信号进行比较所示 (4)。二乙酸酯(5)的部分甲醇分解得到乙酸盐(6)Me,它具有游离的7a-OH,并显示出与C-6相连的氢的复杂和高度特征的偶联模式[参见:化合物(1)和(3),表11。化合物(5)的第二个乙酰氧基被分配到位置12,这是由于观察到(3)的I3CH,6 ca. 39的信号不再存在,取而代之的是6 74.6处的CH信号。OAc基团的取代基效应对其附近碳的化学位移的大小和方向提供了确凿的证据。Iida等aL6报道,在甲基12a-乙酰氧基-5~-胆酸酯中,碳9、14和17的A6分别约为-6、-7和-9 p.p.m.,碳11和13的A6分别约为-6、-7和-9 p.p.m.。未取代的化合物。我们观察到化合物(4)和(5)或(6)之间的类似差异。12a-乙酰氧基在“18-H3的H化学位移”上报告的效应(+0.08 p.p.m.)与我们的数据令人满意地相关。尽管 C-19 甲基的几何形状有所改变,但 144 J. CHEM. SOC. PERKIN TRANS.I 1989 表 1.'H N.m.r. 数据' 化合物 H (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 1 7.. 08 C7.111 7.02 天 (10) 7.08 天 (10) 7.08 天 (10) 6.96 天 (10) 6.95 天 (10) 7.07 天 (10) 7.02 天 (10) 7.10 C7.061 7.10 天 (10) 7.08 天 (10) 天 (10) 天 (10)2 6.24 [6.42] 6.22 DD 6.25 DD 6.26 DD 6.25 DD 6.23 DD 6.25 DD 6.23 DD 6.22 [6.48] 6.26 DD 6.26 DDDD (10, 2) (10, 2) (10, 2) (10, 2) (10, 2) (10, 2) (10, 2) (10, 2) DD (10, 2) (10, 2) (10, 2) 4 6.13 C6.461 6.01 Br D 6.14 Br T 6.02 Br D 6.03 Br D 6.14 Br T 6.00 D (2) 6.00 Br S 6.14 C6.441 6.02 Br S 6.00 D (2) Br T (Ca.2) (Ca. 2) (Ca. 2) (Ca. 2) (Ca. 2) Br T (Ca. 2) 63 2.50 [2.62] 2.60 天 (14) 2.48 滴 2.60 天 (13) 2.60 天 (14) 2.50 滴 6-H 6.03 6-小时 6.04 2.50[ 6.623 2.60 天 (14) 6-小时 6.03 滴 (14, 3) (14, 3) 滴 (10, 2) 滴 (10, 2) 滴 (14, 3) 滴 (10, 2) 6P 2.75 C2.761 2.66 滴 (14) 2.74 滴 2.65 滴 (1 3) 2.66 滴 (14) 2.76 滴 2.74 [2.74] 2.66 滴 (14) 滴滴 (14,3,2) (14, 3, 2) (14, 3,2) Br D (14) 7 4.04 C4.181 5.05 Br Q 4.04 Br S 5.06 Br Q 5.08 Br S 4.06 S 6.23 DD 6.22 DD 4.06 [4.24] 5.08 BR Q 6.24 DD Br S (Ca.3) (Ca. 3) (Ca. 3) (10, 2) Br S (Ca. 3) (10, 2) Br S (Ca. 3) (10, 2.5) 8 2.26 Br T 2.30 Br T 2.32 Br T (10) (9) (10) 12P 2.02 dt 2.04 m 2.03 dt 2.05 m 5.08 br s5.07 br t 2.10 dt 4.09 br s 2.10 ddd (12.5, 4) (1 2.5, 4) (3) (13, 3.5) (13, 5, 4) 20 1.78' ca. 1.8 [2.36] qd (520-22 4) (520-22 4) (774)22 4.21 c4.341 4.20 dt 4.20 dt 4.18 dt 4.16 td 4.18 td 4.20 dt 4.20 ddd 4.29 ddd 4.30 ddd 4.28 ddd dt (11.5, 4) (11, 4) (11, 5) (10, 4) (8, 4) (8, 4) (11, 5) (10, 7, 4) (11, 7, 4) (11, 7, 4) (10, 7, 4) C5.141 dt (11, 4) 23 1.47 1.50 d 1.50 d ca.1.6' C1.931 dd (J22 23 4) (8) (8) (522-2, 7) (14, 11) (J22-23 10) C2.151 dd (14, 4) 1.52' (J2 2-2 3 11.5) 18-H, 0.76 0.76 秒 0.76 秒 0.75 秒 0.83 秒 0.83 秒 0.80 秒 0.82 秒 0.97 秒 1.01 秒 C0.671 秒 [l.lS] 秒 19-H3 1.23 1.25 秒 1.24 秒 1.25 秒 1:23 秒 1.22 秒 1.20 秒 1.20 秒 1.22 秒 1.26 秒 1.20 秒 [1.24]'s [1.22]'s 21-H3 0.96 0.95 天 (7) 0.96 天 (7) 0.97 天 (7) 0.85 天 (7) 0.86 天 (7) 0.98 天 (7) 1.02 天 (7) 0.92 0.91 天 (7) 0.90 d (7) [1.091 c1.121 d (7) d (7) 26-H3 1.30 1.31 s 1.30 s 1.30 s 1.091 c1.1.121 d (7) d (7) d (7) 1.091 c1.121 d (7) d (7) 26-H3 1.30 1.31 s 1.30 s 1.30 s 1.30 30 秒 1.30 秒 1.30 秒 1.31 秒 1.32 秒 1.33 秒 1.34 秒 C1.351 秒 C1.441 秒 27-H3 1.12 秒 1.12 秒 1.16 秒 1.17 秒 1.16 秒 1.17 秒 1.18 秒 1.14 秒 1.14 秒 1.14 秒 C1.251 秒~ [l.lS]的 28-H、1.21 1.20 秒 1.20 秒 1.19 秒 1.18 秒 1.18 秒 1.20 秒 1.22 秒 1.20 秒 [1.20] 秒 [1.22] 秒 2.3 1 2.31s 2.32 2.31 s C2.281 s C2.251 s CH2C0 3.04 + 3.04 d 3.01 + 3.02 d 2.78 d 3.10 (1413 3.07 (141, (141,C3.44 + 3.10 d d (14) 3.07 d 2.90 d 3.461 (14) C3.451 s (14) (14)每个 d (14)OAc 2.00 s 2.00 s 2.03 s, 2.04 s 1.98 s 2.08 s Ortho-1.56 s 1.56 s 1.54 s 1.56 s 1.56 s 1.56 s 1.57 s 醋酸酯 C02Me 3.72 s F CDCl中的值, 除[括号内][2H,]吡啶:括号内的耦合常数(Hz)。通过逐步解耦获得的值。'值可以互换。A-环二烯酮的结果,小取代基效应组在C-7至(-0.02 p.p.m.)时没有消除基团(OH或OAc)。)的化学位移也与产率三烯(8)一致。这种不稳定性并不罕见,因为这些由具有12~乙酰氧基的更典型的类固醇所显示,取代基与质子可能的位置相邻 可以注意到,替代物11-,15的那些例子很容易被抽象出来。然而,乙酰氧基化或 16 位之间的位移比较显示出基本不同的三烯 (8) 和相应的非羟基化三烯 (7) 对其各自角甲基的影响。也与报告的 3C 取代基值一致 雄甾烷系列9 和胆汁酸中 12-乙酰氧基作用的水解是不可能的.6 lo J. CHEM. SOC. PERKIN TRANS.I 1989 145 表2.13CN.m.r. 大图复合碳 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 1' 155.6, CH 155.2, CH 155.7, CH 155.2, CH 154.3, CH 154.7, CH 153.0, CH 152.6, CH 155.7, CH 155.3, CH 2' 127.6, CH 127.7, CH 127.6, CH 127.7, CH 128.0, CH 128.0, CH 128.1,* CH 128.2,“ CH 127.6, CH 127.7, CH 3 185.6, C 185.7、C 185.6、C 185.8、C 185.6、C 185.5、C 186.4、C 186.4、C 185.6、C 185.7、C 4' 127.1、CH 126.6、CH 127.1、CH 126.6、CH 126.8、CH 127.4、CH 123.7、CH 123.8、CH 127.1、CH 126.6、CH 5' 164.5、C 163.9、C 164.6、C 163.9、C 163.1、C 163.8、C 162.6、C 162.5、 C 164.6、C 163.9、C 6' 41.0、CH、37.3、CH、41.0、CH、37.3、CH、37.2、CH、40.9、CH、138.4、CH 138.1、CH 41.0、CH、37.3、CH、7' 69.5、CH 72.0、CH 69.5、CH 72.0、CH 71.5、CH 69.2、CH 127。6、* CH 127.7,' CH 69.1、CH 71.7、CH 8 38.5、CH 38.3、* CH 38.5、CH 38.4、* CH 37.8、CH 39.0、CH 38.1、CH 38.2、CH 40.8、CH 39.3、CH 9 44.4、CH 45.1、CH 44.4、CH 45.2、CH 38.2、CH 37.9、CH 52.0、t CH 42.8、t CH 44.3、* CH 45.3、* CH 10 43.4,* C 43.2,t C 43.4,* C 43.2,T C 42.5, C 42.8, C 41.2, C 40.9, C 43.4 C 43.2, C 11 22.5, CH, 22.4, CH, 22.5, CH, 22.4, CH, 26.8, CH, 26.8, CH, 21.8, CH, 29.3, CH, 22.5, CH, 22.5, CH, 12' 39.0, CH, 38.8, CH, 38.9, CH, 38.8, CH, 74.6, CH 74.8, CH 39.3, CH, 72.3, CH 36.4, CH, 36.4, CH, 13 42.9,* C 43.0,t C 42.9," C 43.0,t C 45.3, C 45.2, C 43.3, C 47.4, C 48.3, C 48.3, C 14 49.9, CH 49.6, CH 49.9, CH 49.7, CH 42.7, CH 43.0, CH 48.3,T CH 41.5,T CH 44.2,* CH 44.1,* CH 15 23.8, CH, 23.8, CH, 23.8, 通道, 23.8, 通道, 23.0, 通道, 23.1, 通道, 23.8, 通道, 23.2, 通道, 23.1, 通道, 23.3, 通道, 16 27.2, 通道, 27.0, 通道, 27.2, 通道, 27.1, 通道, 26.2, 通道, 26.4, 通道, 27.2, 通道, 26.2, 通道, 33.5, 通道, 33.4, 通道, 17 52.0, 通道 51.9, 通道 52.0, 通道 52.1, 通道 43.9, 通道 43.9, 通道 53.2, 通道 45.2, 通道 85.1, C 84.9, C 18' 11.8, CH, 11.7, CH, 11.8, CH, 11.7, CH, 12.2, CH, 12.2, CH, 11.9, CH, 12.9, CH, 15.3, CH, 15.3, CH, 19' 18.3, CH, 18.4, CH, 18.2, CH, 18.5, CH, 18.1, CH, 18.0, CH, 20.0,: CH, 20.0,$ CH, 18.3, CH, 18.5, CH, 20' 39.8, CH 38.4,“ CH 39.7, CH 38.5,* CH 39.9, CH 39.7, CH 38.5, CH 39.0、CH 41.5、CH 41.7、CH 21 12.5、CH、12.5、CH、12.6、CH、12.7、CH、11.6、CH、12.7、CH、11.7、CH、14.6、CH、14.4、CH、22 70.2、CH 70.1、CH 69.8、CH 69.8、CH 69.6、CH 69.6、CH 69.8、CH 70.4、CH 71.8、CH 71。7, CH 23' 30.3, CH, 30.3, CH, 30.2, CH, 30.3, CH, 30.1, CH, 30.1, CH, 30.2, CH, 31.8, CH, 31.5, CH, 31.3, CH, 24 82.9,t C 82.8,: C 82.5,T C 82.5,: C 82.4,* C 82.5,* C 82.5,s C 82.6,$ C 83.4,t C 83.5,t C 25 81.8,t C 81.7J C 81.3,'f C 81.3,: C Sl.l,* C 81.2,* C 81.3,s C 81.4,s C 82.1,f C 82.1,t C 26 19.9, CH, 19.9, CH, 20.0, CH, 19.9, CH, 20.0, CH, 20.5,$ CH, 20.4,: CH, 19.7, CH, 19.7, CH, 27 20.4,: CH, 20.4,s CH, 20.5,: CH, 20.5,$ CH, 20.5,T CH, 20.5,T CH, 20.7,: CH, 20.5,: CH, 20.2,: CH, 20.5,$ CH, 28 24.9,: CH, 24.9,s CH, 25.2,: CH, 25.2,4 CH, 25.1,T CH, 25.2,t CH, 25.2,: CH, 25.1,: CH, 24.8,$ CH, 24.8,$ CH, Ortho cstcr 115.3,C 115.3,C 117.3,C 117.3,C 117.3,C 117.3,C 117.3,C 117.3,C 114.9,C 115.0,C ,CH,CO 50.3m CH, 50.2, CH, 50.2, CH, 50.2, CH, l3COS 193.3, C 193.2, C 193.2, C 193.2.C SMe 12.0, CH, 12.0, CH, 12.0, CH, 醋酸酯 170.2, C 170.3, C 170.2, C, 170.3, C 170.3, C 170.2, C Acet at c 21.0, CH, 21.1, CH, 21.1, CH,, 21.2, CH, 21.0, CH, 21.2, CH, 原乙酸 23.5, CH, 23.5, CH, 23.4, CH, 23.5, CH, 23.5, CH, 23.5, CH, In p.p.m.来自内部 SiMe, 用于 CDCl, 解决方案。每列中带有类似上标的值可以互换。通过C H相关光谱法分配化合物(l),(2),(5),(7),(8)和(9),(9)中的C-12除外。化合物(9)之间18-和19-H的比较'H n.m.r.位移与矮牵牛甾酮A(1)相似,但带有(7)和(8)不是确定的。我们已经将四元中心的 sI-附加 OH 分配给 I3C 构型所示,如化合物 (5) 和 (6) n.m.r. 谱 (6, 85.1) 的 12-乙酰氧基团所示,并且根据 12-H 信号的多样性和幅度没有质子信号。(9)的乙酰化产生化合物(lo),(6 5.07,t,J 3 Hz),表明在植物中也发现了两个高切质子偶联。'H n.m.r. 光谱需要乙酰氧基的轴向取向 (x)。对显示出与 Me TMe 相同的 C-6 质子的比较特征 TMe (7) R = H (9) R = H (8) R = OH (10) R = AC do (1) us。(Z)和(3)我们。(4).用甲醇处理化合物(10)得到三烯(11),其中巯基酯部分已转化为甲酯。曲烯酮 (11) 的 Sp 氢在 'H n.m.r. rCOzMe (11) 光谱中显示为三重态 (6 2.32, J 10 Hz),从而证实了 C-9 和 C-14 处存在轴向氢。因此,剩余的OH必须附着在C-17上。在五氘吡啶溶剂中,化合物 (9) 的 'H n.m.r. 光谱在 6 2.36(J 7 和 4 Hz)下表现出四重双峰,持续 20 小时。通过在 6 5 处辐照解耦 22-H 质子。14 导致四重奏 (J 7 Hz) 的 20-H 信号简化。这一结果与C-17上没有质子是一致的,因此质子必须是羟基化的位置。为了分配 C-17 的立体化学,我们考虑了化合物 C-18 甲基之间取代基产生的质子化学位移差异的大小 (1) 和 (9)。可归因于 (9) us 的 17-羟基 (+0.21 p.p.m.) 的观察到的位移差异。(1)在CDCI中,远大于Page'报告的该溶剂中x或p 17-羟基取代基的值(分别为0.06和0.03 p.p.m.)。在五氘吡啶中,观察到的化合物(9)的C-18甲基信号与化合物(I)中的信号相比,在0.51 p.p.m.到较低的场,但必须注意的是,化合物(1)的C-18甲基在该溶剂中出现在6,0.67处,这令人惊讶地高。据报道,十五氘吡啶中C-17 CC和对羟基取代基的18-H化学位移差异分别为0.00和0.20 p.p.m.。侧链的额外氧化似乎可能影响吡啶与 C-17 羟基的结合。显然,化合物 (9) 的 22-H 的五氘吡啶的巨大下场位移 (A6 +0.85 p.p.m.) 表明侧链可以在靠近 17-OH 的地方呈现构象,该构象可能通过氢键稳定。在没有 C-17 羟基的情况下,即结构(I),22-H在五氘吡啶中仅向下移动0.13 p.p.m。尽管C-18甲基取代基位移的幅度很大,这意味着与17-OH非常接近,因此该基团的p取向,但侧链的扰动影响给分配带来了很大的不确定性。因此,我们选择对化合物(9)进行X射线分析。以这种方式明确测定化合物(9)及其17p-OH基团的分子立体化学。图1显示了X射线研究中使用的原子编号系统所建立的分子构象,其立体视图如图2所示。表3列出了最终的原子坐标。不对称中心 C(20)、C(22) 和 C(24) 具有 R 构型。J. CHEM. SOC. PERKIN TRANS. 分子I 1989 34q3* 39 V'y15 21“38 图 1.化合物(9)的透视图与晶体学编号方案。开放债券代表双键;小圆圈和大阴影圆圈分别代表氧原子和硫原子 图2.化合物(9)的立体视图 化合物(9)通过范德华相互作用和两个铼间氢键[0(38)O(39)2.94和O(34)--O(40)3.32 A]在晶体结构中弱地结合在一起。用 Fisher-Johns 装置进行实验性 MP 并进行校正。在 Perkin-Elmer 241 型自动旋光仪上获得旋光度。26°C,使用浓度为1%的氯仿溶液。1.r.光谱在Perkin-Elmer 237型分光光度计上记录,并参考氯仿溶液;使用甲醇溶液在 Cary 2 19 分光光度计上采集 UV 光谱;'H n.m.r.光谱是在瓦里安EM-390仪器上以90 MHz获得的,在Nicolet NT-200仪器上是在200 MHz下获得的,“C n.m.r.光谱是在后一种仪器上以50 MHz获得的。N.m.r.分配是通过解耦方法以及二维质子-质子和碳-质子相关技术来促进的。使用 VG Micromass 70/70HS 仪器通过电子撞击或氨化学电离来运行质谱。列出的相对丰度是化学电离光谱的相对丰度。在室温下使用 Nicolet R3 自动衍射仪收集 X 射线强度。微观分析由田纳西州诺克斯维尔的Galbraith Enterprises确定。硅胶Si60,7&-230目,来自E.默克公司;Sephadex,LH-20,来自 Pharmacia Co.;h.p.1.c.专栏来自 Rainin J. CHEM. SOC. PERKIN TRANS.I 1989 表 3.化合物 (9) 的原子坐标 (x lo4),具有 e.s.d.Y y z 中的 s 5 399(3) 7 908 -2 618(2) 6 122(2) 8 509(5) -2 638(2) 6 760(2) 7 528(5) -2 790(2) 6 581(2) 5 859(5) -2 885(2) 5 855(2) 5 262(5) -2 865(2) 5 709(2) 3 506(5) -2 927(2) 5 386(2) 2 853(5) -2 399(2) 4 634(2) 3 731(5) -2 291(2) 4 788(2) 5 505(5) -2 222(2) 5 156(2) 6 250(5) -2 749(2) 4 042(2) 6 386(5) -2 091(2) 3 658(2) 5 670(5) -1 583(2) 3 492(2) 3 903(5) -1 672(2) 4 281(2) 3 105(5) -1 759(2) 4 1 lO(3) 1339(5) -1 732(2) 3 451 (3) 1 202(5) -1 334(2) 3 255(2) 2 877(5) -1 138(2) 2 832(2) 3 676(6) -2 225(2) 4 525(3) 6 276(7) -3 345(2) 3 708(2) 3 362(5) -506(2) 3 869(3) 1971(6) -78(2) 3 292(2) 4 596(5) -175(2) 3 879(2) 5 607(5) 248(2) 3 566(2) 7 176(5) 441(2) 2 792(2) 7 037(6) 723(2) 2 791(3)5 721(7) 1182(2) 2 540(3) 8 591(7) 957(2) 4 213(3) 8 183(6) 765(2) 2 562(2) 6 989(5) -317(2) 1976(2) 7 861(6) -785(2) 1 266(3) 6 820(6) -1 OOl(2) -198(3) 5 559(8) -952(3) 480( 1) 7 006(2) -609( 1) 1 250(2) 5 963(6) -1 434(2) 3 223(2) 7 944(4) -123(1) 2 216(1) 6 636(4) 195( 1) 2 793(1) 5 635(3) -582(1) 5 957(2) 2 923(4) -1 865(1) 7 414(2) 8 065(4) -2 832(2) 2 409(2) 2 845(4) -1 113(1) 0 2 228(8) 0 701(4) 1487(8) 122(3) 1411(5) 2 473( 1 1) 172(4) 717(8) 390(26) 401(7) 仪器, Alltech Associatcs 和 Whatman, Inc.;溶剂为 h.p.1.c.级,使用 Altex/Beckman 110A 型泵泵送。使用配备 0.5 mm 光程制备池的 Altex Model 150 监测器在 254 nm 处进行 UV 检测。植物 Materid-Petunia hyhrida Vilm.,商业品种“Royal Cascade”,生长在加利福尼亚州奥尔巴尼的户外床上。在1986年和1987年的生长季节,每隔一段时间收获叶和茎材料。分离程序.-如前所述,这是在冷冻干燥的植物材料上进行的,方法是在硅胶上初步富集矮牵牛甾酮部分,然后进行制备的h.p.1.c。色谱柱和条件如下:Rainin Dynamax 二氧化硅,直径 21.4 mm x 带保护装置 250 mm,20% 丙烷-2-01 己烷溶液;Alltech R-Sil C-18,直径10 mm×250 mm,30%乙腈水溶液;和 Whatman Partisil-10 PAC,直径 9 mm x 500 mm,10% 丙烷-2-01 的己烷溶液。按表4所示洗脱产物。表 4.洗脱区 (ml) Compd. Dynamax 二氧化硅 R Sil C-18 PAC (3) 140-160 45-60 60-70 (5) 23G-265 3-3 100-120 (9) 26&310 28-34 2 10-240 (10) 21&250 2543 145-160 化合物 (3)、矮牵牛酮 D.-M.p. 209-21 2“C(来自庚烷-EtOAc);[一](高/海里) +47.7“(589)、+49.6”(578)、+55.3“(546)、+79.4”(436)和 +38.9“(365);v,,,, 3 450br (OH) 和 1 660 cm-I (conj. CO);h,,,, 246 nm (log E 4.18);m/z485 (MH', 86%) 和 467 (MH' -H20, 12) (发现: C, 74.75;H,9.0。C30H4405需要MH',485;C,74.34;H,9.15%)。化合物 (5),12a-乙酰氧基矮牵牛甾酮D 7-乙酸酯-M.p.241-243“C(来自庚烷-EtOAc);[x](高/海里) +60.3“ (589)、+62.6” (578)、+69.8“ (546)、+105.8” (436) 和 +97.6“ (365);v,,,.1 730 (OAc) 和 1665 cm-' (conj. CO);最大,244 nm (loge 4.15);mlz 585 (MH+, 18%), 525 (MH' -HOAc, 19) 和 465 (MH' -2 HOAc, 6) (发现: C, 69.9;H,8.8。C,,H4,0,需要MH',585;C,69.84;H,8.27%)。化合物 (9), 17P-羟基矮牵牛龙A.-M.p.145-147“C与气体逸出(来自庚烷-EtOAc);[x](高/海里>+44.2“ (589)、+46.1” (578)、+52.0“ (546)、+83.6” (436) 和 +82.6“ (365); vmax,3 475br (OH)、1 685 (COSMe) 和 1 665 cm-I (conj. CO);我。242 nm (log E 4.20);m/r 575 (MH', 13:;) 和 557 (MH' -H20, 21) (发现: C, 66.4;H,7.3;S,5.5。C3,H4,07S需要MH',575;C,66.87;H,8.07;S,5.58%)。化合物 (lo),17p-羟基矮牵牛酮 A 7-乙酸酯-[a](h/nm) +12.4“ (589)、+12.7” (578)、+13.5“ (546)、+14.9” (436) 和 -35.9“ (365);vmaX,3 500br (OH)、1730 (ester)、1 685 (COSMe) 和 1 665 cm-' (conj.CO);h,,,.243 nm (log E 4.15);m/z 617 (MH', 84%), 599 (MH' -H,O, 63) 和 557 (MH' -HOAc, 5.3) (C34H4,O8S 需要 MH', 617)。将矮牵牛酮A乙酸酯(2).-矮牵牛酮A(1)(56mg)溶于乙酸酐(5ml)中,并将混合物在100“C下加热15小时。在旋转蒸发器上以80°C除去大部分Ac,O,并加入MeOH(5ml)。在室温下保持1小时后,将混合物干燥,并将残留物重新溶解在CH,C12(1ml)中。在PAC色谱柱上对该溶液进行色谱,得到纯乙酸盐(2)(50mg),retn.vol。55-65毫升(10%丙-2-01-己烷),m/z 601(MH',83%)和541(MH'-HOAc,14)(C34H4807S需要MH',601)。矮牵牛甾酮 D 醋酸酯 (4)。-矮牵牛酮D(3)如上所述转化为乙酸盐。PAC色谱柱上的H.p.1.c.得到纯乙酸盐(4),retn。体积50-58毫升(10%丙烷-2-醇己烷)。化合物(9)的乙酰化-化合物(9)转化为7-乙酸酯如上所述进行。RSil C-18 色谱柱上的 H.p.1.c.,retn。体积 3&38 ml(30% 水-MeCN)得到纯单乙酸盐,其色谱和光谱学与化合物 (10) 相同。将二烯酮(3)转化为曲烯酮(7).-矮牵牛酮D(3)(27mg)溶于吡啶(1.0ml)中,并加入甲磺酰氯(0.1ml)。将混合物加热至-50“C15分钟,并观察到轻微的棕色发展。大部分吡啶在减压下除去148,剩余物质溶解在MeOH(25ml)中。MeOH蒸发后,将粗产物溶于CH,CI(1.0ml)中,并通过0.5 pmPTFE过滤器过滤溶液。PAC柱上的H.p.1.c.主要给出一种物质,retn。vol. 110-1 30 ml(10%丙-2-醇己烷),在6 3.00(CDC1,;甲磺酯)处显示'H n.m.r.信号。向中间酯中加入0.5~NaOMe-MeOH(1ml),并将该混合物短暂加热回流,然后在室温下保持1小时。加入醋酸(0.025ml),使溶液干燥。将混合物重新溶于CH,Cl(1.0ml)中,并通过0.5 pm PTFE 过滤并在 PAC 色谱柱上色谱,得到纯三烯酮 (7),retn。体积38-46毫升(10%丙-2-醇己烷)(13mg);h,,,, 223、257 和 301 nm;m/z 467 (MH', 97%) (C30H4104需要 MH', 467)。用Na0Me-化合物(5)(20mg)用0.5~NaOMe-MeOH(1ml)回流加热30分钟。加入醋酸(0.05ml),蒸发混合物。将残留物溶于CH,Cl(1ml)中,通过0.5 pmPTFE过滤器过滤溶液,并在Whatman M-9硅胶柱(直径9 mm×50cm)上色谱,用20%丙-2-醇己烷得到两种产物(6),retn。vol.52-62 ml 和 (S), retn.卷 82-100 毫升。化合物(6)由C-7乙酸酯的甲烷分解产生,其h,,,,为245 nm(log E 4.15);nz/z 543 (MH+, 15%) 和 483 (MH' -HOAc, 8.0) (C3,H4@, 需要 MH', 543)。化合物 (S), m.p. 270 “C (decomp.)(来自己烷-Pr'OH),是消除 7-乙酸酯和 12-乙酰氧基甲醇分解产生的三烯酮;它的 H,,,, 224,258 和 302 nm;nz/z 483 (MH', 49%) (C30H4205需要 MH', 483)。用Na0Me-化合物(10)(20mg)处理乙酸盐(10)用0.5~NaOMe-MeOH(1ml)处理,如上所述。上样后,将混合物在M-9硅胶柱上色谱得到两种组分。retn。体积 58-66 ml (11) 和 108-128 ml(20% 丙烷-2-醇己烷)。保留体积较大的材料是由于甲烷基分解为乙醇,同时在侧链上形成甲酯,并具有m/z 559(MH',11%)和541(MH'-H,O,9.2)(C32H4H08需要MH+,559)。化合物(11)是消除7-乙酰氧基并伴随甲基硫代酯转化为甲酯而产生的三烯酮;它有H,,,.225、251 和 298 nm;nzjr 541 (MH+, 53%) 和 523 (MHf -H,O, 8.5) (C32H440, 需要 MH', 541)。晶体Duta.-化合物(9)与结晶溶剂(乙酸乙酯)结晶,C3,H,,0,S~0.5[C4H,0,]:M = 618.9,单斜晶系,空间群12;a = 16.932(9), b = 8.514(3), c = 22.600( 12) A, = 98.79(3)“, V = 3 219.7 A3, Z = 4, D, = 1.28 g crnp3,Do = 1.30 g ~m-~, F(OO0) = 1 335.9, ~(CU-K,) = 12.6 cm-';以乙酸乙酯缓慢蒸发制得无色棱柱状晶体。Dutci 收集和结构 Rejineme1zt.-强度数据是在 Nicolet R3 衍射仪上用石墨单色化 Cu-K 测量的,在室温下通过 8-20 扫描技术以可变扫描速度 (4-30“ min-') 辐射 (h 1.5418 A)。晶格常数通过最小二乘拟合来细化,以设置在衍射仪上测量的 20 个独立反射的角度。强度数据记录为空间群C2,晶格常数为u = 26.087,b = 8.514,c = 22.600 A,p = 140.10”。定期监测两个标准反射的晶体和仪器稳定性;在实验过程中,它们的强度没有显着变化。强度数据针对背景进行了校正,J.CHEM. SOC. PERKIN TRANS.I 1989 洛伦兹和极化因子,'* 但不适用于吸收或二次灭绝。将单位单元维数和所有hkl指数转换为空间群12;晶体结构采用直接方法求解。原子坐标、热参数和比例因子通过“阻塞级联”全矩阵最小二乘程序在 Nova-3 计算机上使用 SHELXTL13 程序包进行细化。最小函数为Crv(IF,I -IFc1)2,其中w = [021FoI + 0.001lFo12]-1.散射因子来自“X射线晶体学国际表”,l4氧和硫的散射因子被校正为异常色散。各向异性温度因子收敛于 R = 0.15 的 40 个非氢原子原子原子参数的最小二乘细化 1.在结构因子计算中,包括46个氢原子(其位置已计算)和羟基(位于随后的差分傅里叶图上),使用各向同性温度因子及其位置参数的约束,将R指数降低到0.141。n.m.r.分析和观察到的密度都表明晶体结构中存在溶剂化物。n.m.r.溶于CHC1的结晶(9)的光谱表明,每式单位(9)有半分子乙酸乙酯。随后的差分傅里叶图显示了C(41)、C(42)、C(43)和C(44)四个残余峰的簇,电子密度分别为6.0、4.2、3.3和1.6 e A-3。这四个峰与可能的溶剂化物分子的几何形状不相容;然而,C(41)-C(42)和C(42)-C(44)的距离分别为1.34和1.13 A,接近于C-0和C=O的距离。] 2 3olFoI 在 3“ I28 I 110”范围内)。收敛时,4个溶剂原子表现出极高的热振运动,平均参数偏移小于0.090,最终差值傅里叶综合偏移在0.7 e k3以内。前五个残余峰在四个溶剂原子的(0.7-0.5 e k3)和(1.1-0.4 A)范围内。结构细化表明晶体结构中存在结晶溶剂,但未能从X射线数据中确定完全溶剂化物分子的确切晶体位置,可能是由于强度数据较差。由乙酸乙酯结晶的化合物(9)的晶体出现不透明和轻微断裂;然而,在数据收集过程中,它们似乎保持稳定。试图通过各种溶剂重结晶来提高晶体质量的尝试没有成功。母体分子和溶剂分子之间没有明显的分子间氢键;这也许可以解释乙酸乙酯分子部分无序的事实。试图通过改变结构细化中的手性来确定绝对构型,但并没有显著改变 R 和 R。 致谢 我们感谢 S. C. Witt 女士收集 n.m.r. 数据,感谢 R. England 先生进行质谱测定。* 补充数据(1月号《作者须知》第5.6.3节)。键长和角度表、各向异性热参数及其对非氢原子的估计标准偏差以及氢原子的位置和热参数已存放在剑桥晶体学数据中心。 和 R. Y. Wong、J. Cliem。SOC.,珀金·特伦斯。1, 1988, 711.J. CHEM. SOC. PERKIN 译.I 1989 2 A. I. Scott,“天然产物紫外光谱的解释”,佩加蒙出版社,牛津,1964 年,第 406 页。3 “The Sadtler Standard N.M.R. Spectra”,Sadtler Research Labs., Inc.,费城,1974 年,第 17336141 页。4 “The Sadtler Standard Carbon-1 3 N.M.R. Spectra”,Sadtler Research Labs., Inc.,费城,1976 年,第 718C. 页。 5 D. A. H. Taylor,Pliyrochemistry,1979 年,第 18 页,第 1574 页。6 T. Iida、T. Tamura、T. Matsumoto 和 F. C. Chang, Org. Mugn.共振, 1983, 21, 305.7 J.E.佩奇。安努。Rep. NMR Spectrosc., 1970, 3, 149.8 T. H. Lowry 和 K. S. Richardson,“有机化学的机制和理论”,Harper and Row,纽约,1976 年,第 358-362 页。9 J. W. Blunt 和 J. B. Stothers, Org. Mugn.共振, 1977, 9, 439.10 D. V. Waterhous, S. Barnes, and D. D. Muccio, J. Lipid Res., 1985, 26, 1068.11 W.麦克法兰和D.S.里克罗夫特,安努。Rep. NMR Spectrosc., 1985, 16, 293.12 Nicolet XTL 操作手册,1980 年,Nicolet Analytical Instru- ments Inc., 10041 Bubb Road, Cupertino, CA 95014, U.S.A. 13 G. M. Sheldrick, SHELXTL, 'An Integrated System for Solving, Refining, and Disdisplay Crystal Structures from Diffraction Data',德意志联邦共和国哥廷根大学,1981 年。14 “国际X射线晶体学表”,Kynoch Press,伯明翰,1974年,第4卷。收稿日期:1987年11月17日;纸712033

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号