首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Reactions involving fluoride ion. Part 36. Aromatic amines as carbon nucleophiles in reactions with unsaturated fluorocarbons
【24h】

Reactions involving fluoride ion. Part 36. Aromatic amines as carbon nucleophiles in reactions with unsaturated fluorocarbons

机译:涉及氟离子的反应。第 36 部分。芳香胺作为碳亲核试剂与不饱和碳氟化合物反应

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. 1 1994 Reactions Involving Fluoride Ion. Part 36.' Aromatic Amines as Carbon Nucleophiles in Reactions with Unsaturated Fluorocarbons Richard D. Chambers,"## Stewart R. Kornb and Graham Sandford# a Department of Chemistry, University of Durham, South Road, Durham OH7 3LE, UK lC1 Specialities, North of England Works, PO Box A38, Leeds Road, Huddersfield, Yorkshire HD2 IFF, UK N,N-Dimethylaniline and N-methyl indole react as carbon nucleophiles with perfluorocycloal kene derivatives, giving products 6a and 6b arising from allylic displacement. 1,8-Bis(dimethy1amino)-naphthalene 7, reacts through the 4,5-positions as a difunctional nucleophile, giving a novel annelation. Reactions with 2 and 3 are regiospecific leading to products 9 and 8, respectively.Reaction of perfluorobicyclopentylidene 4 with 7 gives first, through defluorination, the diene 19 and then by annelation of this the product 14. The colours of the products are evidence of extensive charge separation. In previous parts of this series of papers involving fluoride ion- induced reactions, we have described syntheses of unusual perfluorocycloalkene derivatives, e.g. These are 1 2 3 4 especially interesting because they each involve four electron- withdrawing groups attached to the double bond, thereby activating the system towards nucleophilic attack. Nevertheless, because there is no group attached to the double bond that can be directly displaced. Consequently, the resultant system 5 is often very susceptible F Nuc 5 to further attack and, therefore, these systems frequently act as difunctional electrophiles.There is a vast literature concerning processes which involve nucleophilic attack on perfluoroal- kenes but there is limited information concerning reactions of tertiary aromatic amines with these systems. Such amines are, of course, extremely reactive towards electrophilic aromatic substitution but, surprisingly, there have not been any reported examples, to our knowledge, of perfluorinated alkenes acting as electrophiles in reactions with these systems. However, we have now discovered some examples of nucleophilic attack on fluorinated alkenes by aromatic amines reacting through carbon of the aromatic ring. For example, N,N-dimethylaniline reacted with perfluorobicyclobutylidene 1 to give 6a by nucleophilic attack, accompanied by allylic displacement of fluoride ion; N-methylindole reacted in an analogous way to give 6b.We have also found that 1,8-bis(dimethylarnino)naphthal-ene' 7reacts as a difunctional nucleophile with some of these systems leading to a novel annelation. Reaction with 3, gave product 8 through electrophilic attack at the 4-and 5-positions in the I ,8-bis(dimethy1amino)naphthalene and, similarly, reaction of 7 with 2 gave the analogous product 9 (Scheme 1). At first sight it is surprising that these annelations are regiospecific. 6 NMe2 I 1+ i * 6b X - d bsol; Me Me Me2N NMe2 +3 ~ 7 8 Me,N NMe,It 7+2 A 9 Reagents and conditions: i, MeCN, reflux, overnight However, in each case, this specificity can be rationalised on the basis of the initial nucleophilic attack on the perfluoro-cycloalkene derivative 2 or 3.For example, reaction with 2 could take two different initial courses giving 10 or 11 as intermediates. Obviously, the product 9 derives entirely from 11 rather than 10 and this specificity is understandable on the basis of the stability of the developing carbanions 10 and 11. The carbanion 11 would be the more stable since the charge develops on a carbon atom contained in the more strained ring: this happens because the carbon of the four-membered ring must have more s-character in the orbital containing the developing charge.Structures of 8 amd 9 were derived from NMR data. First, 72 J. CHEM. SOC. PERKIN TRANS. I 1994 Me,+ ,Me Me2N (NMe2 Me2N@-t 9 Scheme 1 + Nuc-mor@@ 11 Nuc=7 NUC= 71 Me2N NMe2 Me2N NMe2 9II II 13 12 the pattern of the proton chemical shifts etc., were entirely consistent with a variety of data for other 4,5-disubstituted derivatives of 1,8-bis(dimethylamino)naphthaIene 7.* The 9F NMR data for 8, clearly indicated trifluoromethyl groups attached to a saturated site, and two difluoromethylene groups, consistent with the unsaturated four-membered ring in 8. Obviously, these data are quite inconsistent with structure 13 which would be obtained by alternative regiochemistry of nucleophilic attack on 3. Similar arguments led to the structure 9; the 19F NMR spectrum showed four resonances in the difluoromethylene region, with shifts in the cyclobutene ring similar to those observed in 8.In contrast, structure 12, which would arise from alternative regiochemistry, would be expected to show five distinguishable resonances in the difluoro-methylene region. Reaction of 1,8-bis(dimethylarnino)naphthalene 7 with per- fluorobicyclopentylidene 4 was more complex. In concentrated solutions in acetonitrile, a dark green solid was obtained, which was sparingly soluble but could be recrystallised from aceto- nitrile. However, no NMR signals could be obtained, suggesting a paramagnetic system, reminiscent of the classical Wurster salts.' However, it was shown by elemental analysis and mass spectrometry to be a product which had lost two fluorine atoms from the starting material 4 as well as further reaction with 7.A possible structure is 14. Nevertheless, in high dilution in acetonitrile, some products were obtained that could be characterised. As before, the product was a dark solid but chromatography over alumina gave three fractions: (a) a solid identical (MS, IR, m.p.) with the above 14; (b) yellow-green crystals with a metallic lustre 15 which gave a dark purple solution; (c) a bright purple solid 16, that gave a green solution! The fraction (b) was identified as the ketone 15 by NMR spectroscopy. In particular, a 2-D "F COSY spectrum confirmed difluoromethylene groups in a saturated cyclo- pentane ring, i.e.shifts similar to product 9, as well as di- fluoromethylene groups in the unsaturated ring. The structure 14 15 16 15 is advanced, over the other possible positions of carbonyl because only in this structure do we obtain maximum charge separation, which would account for the remarkable colour changes with phase. The acetonitrile used was anhydrous and therefore hydrolysis must occur during chromatography. Fraction (c), was also shown to be a hydrolysis product apparently derived from 14. The structure 16 again was derived from NMR data and, particularly, a 2-D 19FCOSY experi- ment, from which we could deduce (i) the presence of five difluoromethylene groups, (ii) the shifts derived from di- fluoromethylene groups in the cyclopentenone ring showed close similarity to those in 15, and (iii) the remaining three difluoromethylene groups are consistent with those in a variety of similar perfluorocyclopentene derived ~ysterns.~'~ The most reasonable mechanism for formation of these unusual systems is contained in Scheme 2, where the opportunities for significant charge separation suggests the basis of the remarkable colour changes that occur. The opportunities for charge transfer in the solid state could also account for the metallic appearance.It is curious, that system 2 reacts by an initial two-electron transfer, i.e. nucleophilic attack, whereas 4 obviously undergoes a one-electron transfer, leading to defluorination prior to subsequent nucleophilic attack by 1,8-bis(dirnethylamino)-naphthalene.We have previously shown that defluorination of 4 by sodium amalgam may be achieved lo but initial defluor- ination by 7 is surprising. However, we can envisage a one- electron transfer process leading to 17 (Scheme 3), followed by loss of fluoride ion giving 18 and then the process repeated leading to the diene 19. The latter was not observed but reacted with 7 to give the product 14. In a separate experiment, 7 reacted with the diene 19 to give the same product 14. The most obvious explanation of the different mode of attack of 1 and 4 in reactions with 7 stems from activation by strain in the four- membered ring system. For example, 1 is of greatly enhanced reactivity over 4 in reactions with neutral ethanol" and, consequently, 2 is much more reactive than 4 towards nucleophilic attack.Experimental All materials were either obtained commercially (Aldrich) or prepared by literature procedures. 2-4 All solvents were dried prior to use by literature procedures. NMR spectra were recorded on either a Varian VXR400S or a Bruker AC250 Spectrometer. In "F NMR spectra, upfield shifts are quoted as negative. J Values are given in Hz. Mass spectra were recorded on a Varian VG 7070E spectrometer, IR spectra on a Perkin- Elmer 577 Grating Spectrophotometer and UV spectra on a Perkin-Elmer Lambda 3 spectrophotometer using standard techniques. Elemental analyses were obtained on either a Perkin-Elmer 240 or a Carlo Erba Elemental Analyser.Melting points were recorded at atmospheric pressure and are uncor- rected. Reactions of Perjluorobicyclobutylidene 1.-(a) With N,N-dimethylandine. A mixture containing N,N-dimethylaniline (0.5 g, 4.1 mmol) and perfluorobicyclobutylidene 1(1.1 g, 3.4 mmol) J. CHEM. SOC. PERKIN TRANS. I 1994 "iH 15 Scheme 2 L J L17 ia 'I1P.etc. 14 7. etc.~ 0-0 19 Scheme 3 was stirred at room temperature overnight in acetonitrile (5 cm3). Water (1 5 cm3) was added to the mixture to precipitate the solid product which was filtered off, recrystallised from aqueous ethanol and vacuum sublimed to yield 1-l'-(p- dimethylaminophenyl)per-uorocyclobutylperJEuorocyclobut-1-ene 6a (1.05 g, 73) as white needles; m.p. 84-85 "C (Found: C, 45.0; H, 2.3; N, 3.2 C16HloF,,N requires C, 45.2; H, 2.3; N, 3.3); vmax/cm-' 1715 (M);6,(250 MHz, CD,CN, Me,Si) 2.96 (6 H, s, NMe,), 6.76 and 7.16 (4 H, AA'XX', JAX 8.7, 3- and 2-ArH); 6,(235 MHz, CD,CN, CFCI,) -101.2 (1 F, s, 2-CF), -114.0 (2 F, S, 4-CF,), -119.0 (2 F, S, 3-CF,), -117.0 and -120.9 (4 F, AB, JAB 214,2'-CF,), -128.0 and -133.9 (2 F, AB, JAB 222,3'-CF,); m/z (EI+) 425 (M+, 100).(b) With N-methylindole. A mixture containing N-methyl- indole (0.4 g, 3 mmol) and perfluorobicyclobutylidene 1 (1.O g, 3 mmol) was refluxed in acetonitrile (5 cm3) overnight. On cooling, the reaction mixture was diluted with water (15 cm3) to precipitate the solid product which was filtered off, dried and purified by vacuum sublimation (oil-bath temp.100 "C, c0.1 mmHg) to give white crystals of 1 -1'-(N-methylindol-3"-yl)per$uorocyclobutylJper-uorocyclobut-1-ene 6b (0.60 g, 46); A,,,(MeCN)/nm 273.6 (log E 3.78), 367.6 (3.45) and 451.2 (3.78); v,,,/cm-' 1680 (M);6,(250 MHz, CD,CN, Me,) 2.81 (6 H, s, 3-NMe2), 2.88 (6 H, s, 4-NMe2), 6.79 and 7.45 (2 H, AX, JAX 8.3,1-H and 2-H), 6.98 and 7.85 (2 H, AX, JAx8.8,5-H and 6-H); 6,(235 MHz, CD,CN, CFCl,) -67.2 (6 F, s, CF,), -105.1 (2 F, S, 9-CF,), -112.5 (2 F, S, 8-CFZ); 6,(100 MHz, CD,CN, Me,) 43.5 (s/br, N-Me), 107.7 (s, C-6a), 108.9 (s, C-2), 11 1.5 (s, C-5), 115-120 (many overlapping peaks, CF, and CF,), 116.7 (s, C-9b), 121.4 (s, C-3a), 123.7 (s, C-9a), 126.0 (s, C-7a), 126.9 (s, C-1), 130.4 (s, C-6), 134.1 (s, C-9c), 152.9 (s, C-3), 153.0 (m, C-7) and 156.1 (s, C-4); m/z (CI+, NH,) 487 (M++ 1, 20). A red solid was also isolated (0.05 g) as yet unidentified; v,,,/cm-' 1790 (GO);6,(235 MHz, CD,CN, CFCl,) -68.9 (s, 6 F) and -110.5(s, 2 F); m/z (EI') 464 (M', 83).(b) With Jluoroalkene 2.A mixture containing 1,8-bis(dimethy1amino)naphthalene 7 (0.6 g, 2.8 mmol) and fluoroalkene 2 (1.0 g, 2.7 mmol) was refluxed overnight in acetonitrile (5 cm3). The solvent was removed to leave an orange solid which was washed with water, collected and dried. The solid was evaporated onto chromatographic alumina from which light petroleum (b.p. 40-60 "C) eluted 3,4-bis(dimethyl- amino)-2',2',3',3',4',4',5',5',8,8,9,9-dodecaJluorospiro8,9-dihy-dro-7H-cyclobutaaphenalene-7-cyclopentane(0.2 g, 13) as orange crystals; m.p.137-1 39 "C;R, 0.5 (Found:C,50.4; H, 3.9; N, 4.4; M+, 548.1 1762. C2,Hl6FI2N2 requires C, 50.3; H, 2.9; N, 5.1; M', 548.1 1219); A,,,(MeCN)/nm 273.6 (log E 4.06), 365.6 (3.74) and 452.8 (4.10); vmax/cm-' 1673 (M);6,(400 MHz, CD,CN, Me,Si) 2.88 (6 H, s, 3-NMe2), 2.94 (6 H, s, 4-NMe,), 6.86 and 7.33 (2 H, AX, JAX 8.4,2-H and 1-H), 7.04and 7.52 (2 H, AX, JAX 8.8, 5-H and 6-H); 6,(376 MHz, CD,CN, CFCl,) -104.9 (2 F, s, 9-CF2), -112.8 and -116.0 (4 F, AB, JAB 249.1,2'-CF,), -114.6 (2 F, S, 8-CF,), -135.2 (4 F, S, m.p. 59-60deg;C (Found: C, 47.25; H, 1.8; N, 3.1. C,,H,F,,N 3'-CF,); 6,(100 requires C, 46.9; H, 1.85; N, 3.2); v,,,/cm-' 1720 (M);6, (400 MHz, CD,CN, Me,Si) 3.85 (3 H, s, N-Me), 7.20 (1 H, t, Jfi,,,6,,7.6,6"-H), 7.33 (I H, t, J5,*,6,,7.6,5"-H), 7.39(1 H, d, J6,,,7,, 8.0, 7"-H), 7.51 (1 H, d, J4,,,5,, 8.3, 4"-H), 7.56 (1 H, S, 2"-H); dF(376 MHz, CD,CN, CFC1,) -100.6 (1 F, S, 2-CF), -114.7 (2F,s,4-CF2), -119.3(2F,s,3-CF2), -117.2and -120.4(4F, AB, JAB 215,2'-CF,), -128.2 and -130.4 (2 F, AB, JAB 221, 3'-CF,); m/z (CI+, NH,) 436 (M' + 1,28).Reactions of 1,8-Bis(dimethylamino)naphthalene7.-(a) With perfluoroisopropylidenecyclobutane3. A mixture containing 1,8- bis(dimethy1amino)naphthalene 7 (0.7 g, 3.2 mmol), the fluoroalkene 3 (1.O g, 3.2 mmol) and acetonitrile (10 cm3) was heated at reflux overnight. Water was added to the mixture to precipitate an orange solid which was filtered off and shown by TLC to contain two components.The solid was evaporated onto chromatographic alumina elution of which with light petroleum afforded 3,4-bis(dimethylamino)-8,8,9,9-tetra~uoro-53-( tri~uoromethyl)-8,9-dihydro-7H-cyclobutaalphenalene8 (1.1 g, 21) as orange crystals; RF 0.5; m.p. 128 "C (from aqueous ethanol) (Found: C, 52.2; H, 3.4; F, 38.0; N, 5.6. C2,H,,F1,N, requires C, 51.9; H, 3.3; F, 39.0; N, 5.8); MHz, CD,CN, Me,Si) 43.0 (s/br, NMe,), 109.4 (s, C-2), 111.4 (s, C-5), 115.4 (s, C-3a), 115-120 (many overlapping peaks, CF,), 128.6 (s, C-1), 134.0 (s, C-9c), 135.8 (s, C-6), 15 1.9 (m, C-7), 154.4 (s, C-3) and 158.2 (s, C-4); m/z(CI', NH,) 549 (M+ + 1,3779. (c) With per-uorobicyclopentylidene 4. (i) At low dilution. A mixture containing 1,8-bis(dimethylarnino)naphthalene7 (1.1 g, 5.1 mmol) and perfluorobicyclopentylidene 4 (1.O g, 2.3 mmol) was stirred overnight at room temperature in acetonitrile (5 cm3) to form a dark olive green precipitate.Water was added to the mixture and the solid was collected by filtration. The solid was adsorbed onto chromatographic alumina from which light petroleum-dichloromethane (4 :1) eluted 3,4-bis(dimethyl- amino)-7,7,8,8,9,9,10,10,11,11,12,12-dodeca~uoro-8,9,11,12-tetrahydro-7H, 1OH-dicyclopenta4,5 :6,7cyclohepta 1,2,3-ij 3-naphthalene 14 (0.54 g, 42); m.p. 24345 "C (decomp.) (from acetonitrile); R, 0.65 (Found: C, 51.3; H, 2.8; F, 40.0; N, 4.9. C2,Hl6F,,N, requires C, 51.4; H, 2.8; F, 40.7; N, 5.0); no NMR data could be recorded; m/z (EI') 560 (M+, 100).(ii) At high dilution. A mixture containing 1,8-bis(dimethyl- amino)naphthalene 7 (0.5 g, 2.5 mmol) and perfluoro-bicyclopentylidene4 (1 .O g, 2.3 mmol) was stirred overnight at room temperature in acetonitrile (1 20 cm3). Evaporation of the mixture under reduced pressure left a solid residue, which was adsorbed onto chromatographic alumina and from which light petroleum-dichloromethane (4 :1) eluted compound 14 (0.23 g, 1873,as above; 3,4-bis(dimethylamino)-2',2',3',3',4',4',5',5',9,9, 10,l O-dodecafluoro- I OH-spiro(cyclopentaalphenylene-7-cyclo-pentan)-8(9H)-one 15 (0.14 g, 10) as bright green metallic- looking flakes; m.p. 280 "C; R, 0.45 (Found: C, 48.4; H, 2.75; N, 4.50. C,4H,,F,,N,0 requires C, 50.0; H, 2.75; N, 4.5.C,,H,,F,,N,O~H,O requires C, 48.5; H, 3.0; N, 4.7); v,,,/cm-' 1720 (M);6,(400 MHz, CD,CN, Me,Si) 2.16 (1 2 H, s, NMe,), 6.95 and 7.25 (2 H, AX, JAX 8.8, 1-H and 2-H), 7.05 and 7.92 (2 H, AX, JAX 8.8, 5-H and 6-H); 6,(376 MHz, CD,CN, CFC1,) -111.0 and -113.4 (4 F, AB, JAB 246.7, 2'- CF,), -117.8 s(pseudo AB), 2F, 10-CF,, -131.4 2 F, s(pseudo AB), 9-CF,, and -132.3 4 F, s(pseudo AB), 3'-CF,; m/z (CI-, NH,) 576 (M+, 72); and 3,4-bis-J. CHEM. SOC. PERKIN TRANS. 1 1994 References 1 R. D. Chambers, M. P. Greenhall and M. J. Seabury, J.Chem. Soc., Perkin Trans. 1, 199 1,206 1. 2 R. D. Chambers, G. Taylor and R. L. Powell, J. Chem. Soc., Perkin Trans. 1, 1980,426. 3 R. D. Chambers, G. Taylor and R. L. Powell, J.Chem. Soc., Perkin Trans. 1, 1980,429. 4 R. D. Chambers, R. S. Matthews, G. Taylor and R. L. Powell, J. Chem. Soc., Perkin Trans. 1, 1980,435. 5 A. E. Bayliff, M. R. BryceandR. D. Chambers, J. Chem. Soc., Perkin Trans. 1, 1987,763. 6 See for example, (a)R. D. Chambers, Fluorine in Organic Chemistry, Wiley-Interscience, New York, 1973, ch. 7; (6) R. D. Chambers and M. R. Bryce in Comprehensive Carbanion Chemistry, vol. 5, eds. E. Buncel and T. Durst, Elsevier, Amsterdam, 1987; (c) R. D. Chambers and R. H. Mobbs, Ado. Fluorine Chem., 1965, 4, 50, and references therein. 7 (a) R. W. Alder, P. S. Bowmann, W. R. S. Steele and (dimethyZamino)-7,7,8,8,9,9,11,11,12,12-decafluoro-8,9,11,12-tetrahydro-7H-dicyclopenta4,5:6,7cyclohepta 1,2,3-01- naphthalen-10-one 16 (0.12 g, 9) as bright purple metallic- looking flakes; m.p. 280 "C; RF0.3 (Found: C, 53.2; H, 3.05; N, 4.75; M', 538.1100900. C,,H,,F,,N,O requires C, 53.5; H, 2.95; N, 5.2; M+, 538.1 10295); v,,,/cm-' 1720 (C=O); 6,(400 MHz, CD,CN, Me,Si) 2.16 (1 2 H, s, NMe,), 6.49 and 6.92 (2 H, AX, JAX 8.8, 5-H and 6-H), 6.51 and 7.33 (2 H, AX, JAX 8.8,2-H and 1-H); 8, (376 MHz, CD,CN, CFC1,) -106.5 and -128.8 (2 F, AB, JAB 278, 12-CF2), -109.3 and -133.1 (2 F, AB, JAB 262, 7-CF2), -119.4 and 128.0 (2 F, AB, JAB 260, 9-CF2), -128.8 and -136.0 (2 F, AB, JAB 283, 11-CF,), -133.4 and -143.3 (2 F, AB, JAB 240, 8-CFz); m/z (EI') 538 (M', 100). D. R. Winterman, J. Chem. Soc., Chem. Commun., 1968, 723; (b) H. A. Staab and T. Saupe, Angew. Chem., Int. Ed. Engl., 1988, 27, 865. 8 N. V. Vistorobskii and A. F. Pozharskii, Z. Org. Chim., 1989, 25, 2154. 9 See for example, J. Hine, Physical Organic Chemistry, McGraw-Hill, New York, 1956, p. 387. 10 M. W. Briscoe, R. D. Chambers, S. J. Mullins, T. Nakamura and F. G. Drakesmith, J,Chem. SOC.,Chem. Commun., 1990, 1127. 11 R. D. Chambers, G. Taylor and R. L. Powell, J. Fluorine Chem., 1980,16, 161. Paper 3/04874H Received 1 1th August 1993 Accepted 20th September 1993
机译:J. CHEM. SOC. PERKIN TRANS. 1 1994 涉及氟化物离子的反应,第 36 部分。芳香族胺作为碳亲核试剂与不饱和碳氟化合物反应 Richard D. Chambers,“## Stewart R. Kornb 和 Graham Sandford# a 达勒姆大学化学系,南路,达勒姆 OH7 3LE,英国 lC1 Specialities,英格兰北部工厂,邮政信箱 A38,利兹路,哈德斯菲尔德,约克郡 HD2 IFF,英国 N,N-二甲基苯胺和N-甲基吲哚作为碳亲核试剂与全氟环烯衍生物反应, 给予烯丙基位移产生的产物 6A 和 6B。1,8-双(二甲基1氨基)-萘7,通过4,5位反应为双官能核亲核试剂,产生新型退火反应。与 2 和 3 的反应是区域特异性的,分别导致产物 9 和 8。全氟双环戊亚基4与7反应,首先通过脱氟得到二烯19,然后通过退火得到产物14。产品的颜色是大量电荷分离的证据。在本系列论文的前几部分涉及氟离子诱导反应中,我们描述了不寻常的全氟环烯烃衍生物的合成,例如,这些是 1 2 3 4 特别有趣,因为它们每个都涉及连接到双键的四个吸电子基团,从而激活系统进行亲核攻击。然而,由于没有附着在双键上的基团可以直接置换。因此,由此产生的系统5通常非常容易受到F Nuc 5的进一步攻击,因此,这些系统经常充当双功能亲电试剂。关于涉及亲核攻击全氟烯烃的过程的文献很多,但关于叔芳香胺与这些系统反应的信息有限。当然,这种胺对亲电芳香族取代具有极强的反应性,但令人惊讶的是,据我们所知,没有任何报道的全氟烯烃在与这些系统反应中充当亲电剂的例子。然而,我们现在已经发现了一些芳香胺通过芳香环的碳反应对氟化烯烃进行亲核攻击的例子。例如,N,N-二甲基苯胺与全氟双环丁亚基1反应,通过亲核攻击得到6a,并伴有氟离子的烯丙基置换;N-甲基吲哚以类似的方式反应得到6b。我们还发现,1,8-双(二甲基铂基)萘烯'7作为双官能核亲核试剂与其中一些系统反应,导致新的退火反应。与3反应,通过在I,8-双(二甲基1氨基)萘的4位和5位的亲电攻击得到产物8,同样,7与2的反应得到类似产物9(方案1)。乍一看,令人惊讶的是,这些退火是区域特异性的。6 NMe2 I 1+ i * 6b X - d \ Me Me Me2N NMe2 +3 ~ 7 8 Me,N NMe,It 7+2 A 9 试剂和条件:i、MeCN、反流、过夜 然而,在每种情况下,这种特异性都可以根据对全氟环烯烃衍生物 2 或 3 的初始亲核攻击来合理化。 与 2 的反应可以采取两个不同的初始过程,给出 10 或 11 作为中间体。显然,产物9完全来自11而不是10,并且根据正在开发的碳离子10和11的稳定性,这种特异性是可以理解的。碳负离子 11 将更稳定,因为电荷在包含在更应变的环中的碳原子上发展:发生这种情况是因为四元环的碳在包含展开电荷的轨道中必须具有更多的 s 特征。8 个 amd 9 的结构来自 NMR 数据。第一,72 J. CHEM. SOC. PERKIN TRANS.I 1994 Me,+ ,Me Me2N (NMe2 Me2N@-t 9 方案 1 + Nuc-mor@@ 11 Nuc=7 NUC= 71 Me2N NMe2 Me2N NMe2 9II II 13 12 质子化学位移等的模式与1,8-双(二甲氨基)萘烯 7 的其他 4,5-二取代衍生物的各种数据完全一致。 8, 明确指出三氟甲基附着在饱和位点上,和两个二氟亚甲基,与8中的不饱和四元环一致。显然,这些数据与结构 13 完全不一致,结构 13 可以通过对 3 的亲核攻击的替代区域化学获得。类似的论点导致了结构 9;19F NMR谱图显示二氟亚甲基区域有四个共振,环丁烯环的位移与 8.In 观察到的相似,结构12将产生替代区域化学,预计在二氟亚甲基区域显示五个可区分的共振。1,8-双(二甲烷基)萘7与全氟双环戊亚基4的反应更为复杂。在乙腈的浓溶液中,得到深绿色固体,其微溶性,但可由乙腈重结晶。然而,无法获得核磁共振信号,这表明存在一个顺磁系统,让人想起经典的伍斯特盐。然而,通过元素分析和质谱分析表明,它是一种从起始材料4中失去两个氟原子的产物,并与7发生进一步反应。然而,在乙腈的高稀释度下,获得了一些可以表征的产物。和以前一样,该产品是深色固体,但氧化铝色谱法得出了三个馏分:(a)固体相同(MS,IR,m.p.)与上述14项;(b)具有金属光泽的黄绿色晶体15,产生深紫色溶液;(c) 一个明亮的紫色固体 16,得到一个绿色的溶液!通过核磁共振波谱将馏分(b)鉴定为酮15。特别地,2-D“F COSY谱图证实了饱和环戊烷环中的二氟亚甲基基团,即与产物9相似的位移,以及不饱和环中的二氟亚甲基基团。结构 14 15 16 15 比羰基的其他可能位置更先进,因为只有在这种结构中我们才能获得最大的电荷分离,这将解释随相位显着的颜色变化。使用的乙腈是无水的,因此必须在色谱过程中进行水解。馏分(c)也被证明是显然来源于14的水解产物。结构 16 再次来自 NMR 数据,特别是 2-D 19FCOSY 实验,从中我们可以推断出 (i) 存在五个二氟亚甲基,(ii) 来自环戊烯酮环中二氟亚甲基的位移与 15 中的位移非常相似,以及 (iii) 其余三个二氟亚甲基基团与各种类似的全氟环戊烯衍生的 ~ysterns 中的位移一致。~'~ 方案 2 中包含了形成这些不寻常系统的最合理机制,其中显着电荷分离的机会表明了发生的显着颜色变化的基础。固态电荷转移的机会也可以解释金属外观。奇怪的是,系统 2 通过最初的双电子转移反应,即亲核攻击,而 4 显然经历了单电子转移,导致在随后的亲核攻击之前脱氟 1,8-双(地乙基氨基)-萘。我们之前已经证明,汞合金钠对 4 的脱氟可能是可能的,但 7 的初始脱氟是令人惊讶的。然而,我们可以设想一个导致17的单电子转移过程(方案3),然后是氟离子损失得到18,然后重复该过程导致二烯19。后者未被观察到,但与7反应得到产物14。在另一个实验中,7与二烯19反应得到相同的产物14。在与 7 的反应中,1 和 4 的不同攻击模式的最明显解释源于四元环系统中应变的活化。例如,在与中性乙醇的反应中,1 的反应性比 4 高得多“,因此,2 对亲核攻击的反应性比 4 高得多。实验 所有材料要么通过商业获得(Aldrich),要么通过文献程序制备。2-4 所有溶剂在使用前均已干燥。NMR 波谱在瓦里安VXR400S或布鲁克 AC250 波谱仪上记录。在“F NMR波谱”中,上场位移被引用为负。J 值以 Hz 为单位。 质谱在瓦里安 VG 7070E 光谱仪上记录,红外光谱在 Perkin-Elmer 577 光栅分光光度计上记录,紫外光谱在 Perkin-Elmer Lambda 3 分光光度计上记录。在Perkin-Elmer 240或Carlo Erba元素分析仪上进行元素分析,在大气压下记录熔点,并且未得到校正。Perjluorobicyclobutylidene 1.-(a)与N,N-二甲基安定的反应。含有N,N-二甲基苯胺(0.5g,4.1mmol)和全氟双环丁亚基1(1.1g,3.4mmol)的混合物。I 1994 “iH 15 方案 2 L J L17 ia 'I1P.etc.14 7.等~ 0-0 19 方案3在室温下在乙腈(5 cm3)中搅拌过夜。向混合物中加入水(1 5 cm3)析出固体产物,滤去固体产物,用乙醇水溶液重结晶,减压升华,得到1-[l'-(对二甲氨基苯基)-每-uorocyclobutyl]perJEuorocyclobut-1-ene 6a(1.05g,73%)为白色针状;m.p. 84-85 “C (发现: C, 45.0;H,2.3;N, 3.2 C16HloF,,N 需要 C, 45.2;H,2.3;N,3.3%);vmax/cm-' 1715 (米);6,(250 MHz,CD,CN,Me,Si) 2.96 (6 H, s, NMe,), 6.76 和 7.16 (4 H, AA'XX', JAX 8.7, 3- 和 2-ArH);6,(235 MHz, CD,CN, CFCI,) -101.2 (1 F, s, 2-CF), -114.0 (2 F, S, 4-CF,), -119.0 (2 F, S, 3-CF,), -117.0 和 -120.9 (4 F, AB, JAB 214,2'-CF,), -128.0 和 -133.9 (2 F, AB, JAB 222,3'-CF,);m/z (EI+) 425 (M+, 100%)。(b) 含N-甲基吲哚。将含有N-甲基吲哚(0.4g,3mmol)和全氟双环丁基1(1.O g,3mmol)的混合物在乙腈(5cm3)中回流过夜。冷却时,将反应混合物用水(15 cm3)稀释析出固体产物,滤出固体产物,经真空升华(油浴温度100“C,c0.1 mmHg)干燥提纯,得到白色晶体1 -[1'-(N-甲基吲哚-3”-基)per$uorocyclobutylJper-uorocyclobut-1-ene 6b(0.60 g,46%);A,,,(MeCN)/nm 273.6 (log E 3.78)、367.6 (3.45) 和 451.2 (3.78);v,,,/cm-' 1680 (米);6,(250 MHz,CD,CN,Me,%) 2.81 (6 H, s, 3-NMe2), 2.88 (6 H, s, 4-NMe2), 6.79 和 7.45 (2 H, AX, JAX 8.3,1-H 和 2-H), 6.98 和 7.85 (2 H, AX, JAx8.8,5-H 和 6-H);6,(235 MHz, CD,CN, CFCl,) -67.2 (6 F, s, CF,), -105.1 (2 F, S, 9-CF,), -112.5 (2 F, S, 8-CFZ);6,(100 MHz, CD,CN, Me,%) 43.5 (s/br, N-Me), 107.7 (s, C-6a), 108.9 (s, C-2), 11 1.5 (s, C-5), 115-120 (许多重叠峰, CF, 和 CF,), 116.7 (s, C-9b), 121.4 (s, C-3a), 123.7 (s, C-9a), 126.0 (s, C-7a), 126.9 (s, C-1), 130.4 (s, C-6), 134.1 (s, C-9c), 152.9 (s, C-3), 153.0 (m, C-7) 和 156.1 (s, C-4);m/z (CI+, NH,) 487 (M++ 1, 20%).还分离出一种红色固体(0.05 g),但尚未鉴定;v,,,/cm-' 1790 (GO);6,(235 MHz, CD,CN, CFCl,) -68.9 (s, 6个文件) and -110.5(s, 2个文件);m/z (EI') 464 (m', 83%)。(b) 将含有1,8-双(二甲基1氨基)萘7(0.6 g,2.8 mmol)和氟烯烃2(1.0 g,2.7 mmol)的混合物在乙腈(5 cm3)中回流过夜。除去溶剂,留下橙色固体,用水洗涤,收集并干燥。将固体蒸发到色谱氧化铝上,轻质石油(b.p.40-60“C)从中洗脱出3,4-双(二甲基-氨基)-2',2',3',3',4',4',5',5',8,8,9,9-十二烷[8,9-二氢-dro-7H-环丁[a]酚烯-7-环戊烷](0.2g,13%)为橙色晶体;m.p.137-1 39“C;R, 0.5 (Found:C,50.4;H,3.9;N,4.4%;M+,548.1 1762。C2,Hl6FI2N2 需要 C, 50.3;H,2.9;N,5.1%;M', 548.1 1219);A,,,(MeCN)/nm 273.6 (log E 4.06)、365.6 (3.74) 和 452.8 (4.10);vmax/cm-' 1673 (米);6,(400 MHz,CD,CN,Me,Si) 2.88 (6 H, s, 3-NMe2), 2.94 (6 H, s, 4-NMe,), 6.86 和 7.33 (2 H, AX, JAX 8.4,2-H 和 1-H), 7.04 和 7.52 (2 H, AX, JAX 8.8, 5-H 和 6-H);6,(376 MHz, CD,CN, CFCl,) -104.9 (2 F, s, 9-CF2), -112.8 和 -116.0 (4 F, AB, JAB 249.1,2'-CF,), -114.6 (2 F, S, 8-CF,), -135.2 (4 F, S, m.p. 59-60°C (Found: C, 47.25;H,1.8;N,3.1。C,,H,F,,N 3'-CF,);6,(100 需要 C,46.9;H,1.85;N,3.2%);v,,,/cm-' 1720 (米);6, (400 MHz, CD,CN, Me,Si) 3.85 (3 H, s, N-Me), 7.20 (1 H, t, Jfi,,,6,,7.6,6“-H), 7.33 (I H, t, J5,*,6,,7.6,5”-H), 7.39(1 H, d, J6,,,7,, 8.0, 7“-H), 7.51 (1 H, d, J4,,,5,, 8.3, 4”-H), 7.56 (1 H, S, 2“-H);dF(376 MHz, CD,CN, CFC1,) -100.6 (1 F, S, 2-CF), -114.7 (2F,s,4-CF2), -119.3(2F,s,3-CF2), -117.2 和 -120.4(4F, AB, JAB 215,2'-CF,), -128.2 和 -130.4 (2 F, AB, JAB 221, 3'-CF,);m/z (CI+, NH,) 436 (m' + 1,28%)。1,8-双(二甲基氨基)萘7.-(a)与全氟异亚丙基环丁烷的反应3.将含有1,8-双(二甲基1氨基)萘7(0.7g,3.2mmol)、氟烯烃3(1.O g,3.2mmol)和乙腈(10cm3)的混合物回流加热过夜。向混合物中加入水以沉淀橙色固体,该固体被过滤掉,TLC显示含有两种成分。将固体蒸发到色谱氧化铝上洗脱,用轻质石油洗脱得到3,4-双(二甲基氨基)-8,8,9,9-四~uoro-53-(三~uoromethyl)-8,9-二氢-7H-环丁[alphenalene8(1.1g,21%)为橙色晶体;射频 0.5;m.p. 128 “C(来自乙醇水溶液)(发现:C,52.2;H,3.4;F,38.0;N,5.6。C2,H,,F1,N,需要C,51.9;H,3.3;F,39.0;N,5.8%);MHz, CD,CN, Me,Si) 43.0 (s/br, NMe,), 109.4 (s, C-2), 111.4 (s, C-5), 115.4 (s, C-3a), 115-120 (许多重叠峰, CF,), 128.6 (s, C-1), 134.0 (s, C-9c), 135.8 (s, C-6), 15 1.9 (m, C-7), 154.4 (s, C-3) 和 158.2 (s, C-4);m/z(CI', NH,) 549 (M+ + 1,3779.(c) 含 per-uorobiringopentylidene 4.(i) 低稀释度。将含有1,8-双(二甲烷基)萘7(1.1g,5.1mmol)和全氟双环戊亚基4(1.O g,2.3mmol)的混合物在室温下在乙腈(5cm3)中搅拌过夜,形成深橄榄绿色沉淀。向混合物中加入水,并通过过滤收集固体。将固体吸附在色谱氧化铝上,从中洗脱出轻质石油二氯甲烷(4:1)3,4-双(二甲基-氨基)-7,7,8,8,9,9,10,10,11,11,12,12-十二烷~uoro-8,9,11,12-四氢-7H,1OH-二环戊并[4,5:6,7]环庚烷[ 1,2,3-ij 3-萘 14 (0.54 g, 42%); M.P. 24345 “C(分解)(来自乙腈);R, 0.65 (发现: C, 51.3;H,2.8;F,40.0;N,4.9。C2,Hl6F,,N,需要C,51.4;H,2.8;F,40.7;N, 5.0%);无法记录核磁共振数据;m/z (EI') 560 (M+, 100%).(ii) 高稀释度。含有1,8-双(二甲基-氨基)萘7(0.5g,2.5mmol)和全氟双环戊亚基4(1.O g,2.3 mmol)在室温下在乙腈(1 20 cm3)中搅拌过夜。混合物在减压下蒸发留下固体残留物,将其吸附在色谱氧化铝上,并从中洗脱出轻质石油二氯甲烷(4:1)化合物14(0.23g,1873,同上;3,4-双(二甲基氨基)-2',2',3',3',4',4',5',5',9,9,9,10,l O-十二氟-I OH-螺(环戊二烯[亚苯基-7-环戊)-8(9H)-酮 15(0.14 g, 10%)为亮绿色金属薄片;熔>280“C;R, 0.45 (发现: C, 48.4;H,2.75;N,4.50。C,4H,,F,,N,0 需要 C, 50.0;H,2.75;N,4.5%。C,,H,,F,,N,O~H,O要求C,48.5;H,3.0;N,4.7%);v,,,/cm-' 1720 (米);6,(400 MHz,CD,CN,Me,Si) 2.16 (1 2 H, s, NMe,), 6.95 和 7.25 (2 H, AX, JAX 8.8, 1-H 和 2-H), 7.05 和 7.92 (2 H, AX, JAX 8.8、5-H 和 6-H);6,(376 MHz, CD,CN, CFC1,) -111.0 和 -113.4 (4 F, AB, JAB 246.7, 2'- CF,), -117.8 [s(伪 AB), 2F, 10-CF,], -131.4 [2 F, s(伪 AB), 9-CF,] 和 -132.3 [4 F, s(伪 AB), 3'-CF,];m/z (CI-, NH,) 576 (M+, 72%);和 3,4-双-J。CHEM. SOC. PERKIN TRANS. 1 1994 参考文献 1 R. D. Chambers, M. P. Greenhall and M. J. Seabury, J.Chem. Soc., Perkin Trans. 1, 199 1,206 1.2 R. D. Chambers, G. Taylor and R. L. Powell, J. Chem. Soc., Perkin Trans. 1, 1980,426.3 R. D. Chambers, G. Taylor and R. L. Powell, J.Chem. Soc., Perkin Trans. 1, 1980,429.4 R. D. Chambers, R. S. Matthews, G. Taylor and R. L. Powell, J. Chem. Soc., Perkin Trans. 1, 1980,435.5 A.E.贝利夫,M.R.布莱斯安德R.D. Chambers, J. Chem. Soc., Perkin Trans. 1, 1987,763.6 例如,见(a)R.D.Chambers,《有机化学中的氟》,Wiley-Interscience,纽约,1973年,第7章;(a)R.D.Chambers,Fluorine in Organic Chemistry,Wiley-Interscience,纽约,1973年,第7章;(a)R.D.Chambers,Fluorine in Organic Chemistry,Wiley-Interscience,纽约,1973年,第7章;(a)R.D.Chambers,Fluorine in Organic Chemistry(6) R. D. Chambers 和 M. R. Bryce in Comprehensive Carbanion Chemistry, vol. 5, eds. E. Buncel and T. Durst, Elsevier, Amsterdam, 1987;(c) R.D.钱伯斯和R.H.莫布斯,阿多。Fluorine Chem., 1965, 4, 50, 以及其中的参考文献。7 (a) R. W. Alder, P. S. Bowmann, W. R. S. Steele 和 (dimethyZamino)-7,7,8,8,9,9,11,11,12,12-十氟-8,9,11,12-四氢-7H-二环戊并[4,5:6,7]环庚烷[ 1,2,3-01-萘-10-酮 16 (0.12 g, 9%) 为亮紫色金属薄片; 熔点> 280 “C;RF0.3 (发现: C, 53.2;H,3.05;N,4.75%;M',538.1100900。C,,H,,F,,N,O 需要 C, 53.5;H,2.95;N,5.2%;M+,第538页。1 10295);v,,,/cm-' 1720 (C=O);6,(400 MHz,CD,CN,Me,Si) 2.16 (1 2 H, s, NMe,), 6.49 和 6.92 (2 H, AX, JAX 8.8, 5-H 和 6-H), 6.51 和 7.33 (2 H, AX, JAX 8.8,2-H 和 1-H);8, (376 MHz, CD,CN, CFC1,) -106.5 和 -128.8 (2 F, AB, JAB 278, 12-CF2), -109.3 和 -133.1 (2 F, AB, JAB 262, 7-CF2), -119.4 和 128.0 (2 F, AB, JAB 260, 9-CF2), -128.8 和 -136.0 (2 F, AB, JAB 283, 11-CF,), -133.4 和 -143.3 (2 F, AB, JAB 240, 8-CFz);m/z (EI') 538 (m', 100%)。D. R. Winterman, J. Chem. Soc., Chem. Commun., 1968, 723;(b) H.A.Staab和T.Saupe, Angew。Chem., Int. Ed. Engl., 1988, 27, 865.8 N. V. Vistorobskii 和 A. F. Pozharskii, Z. Org. Chim., 1989, 25, 2154.9 例如,参见J.Hine,Physical Organic Chemistry,McGraw-Hill,纽约,1956年,第387页。10 M. W. Briscoe, R. D. Chambers, S. J. Mullins, T. Nakamura and F. G. Drakesmith, J,Chem. SOC.,Chem. Commun., 1990, 1127.11 R. D. Chambers, G. Taylor 和 R. L. Powell, J. Fluorine Chem., 1980,16, 161.论文 3/04874H 收稿日期 1993年8月1日 录用日期:1993年9月20日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号