首页> 外文期刊>paleoceanography >Integrated Late Eocene‐Oligocene Stratigraphy of the Alabama Coastal Plain: Correlation of Hiatuses and Stratal Surfaces to Glacioeustatic Lowerings
【24h】

Integrated Late Eocene‐Oligocene Stratigraphy of the Alabama Coastal Plain: Correlation of Hiatuses and Stratal Surfaces to Glacioeustatic Lowerings

机译:Integrated Late Eocene‐Oligocene Stratigraphy of the Alabama Coastal Plain: Correlation of Hiatuses and Stratal Surfaces to Glacioeustatic Lowerings

获取原文
       

摘要

We integrated strontium and oxygen isotopic, biostratigraphic, and magnetostratigraphic studies of two upper Eocene‐Oligocene boreholes drilled near Bay Minette and St. Stephens Quarry (SSQ), Alabama. Continuous coring provided fresh, unweathered material for magnetostratigraphic studies, minimizing problems reported from nearby outcrops. Difficulties with each technique were encountered because of diagenesis, absence of marker fossils, and the presence of unconformities; however, by integrating results from isotopic stratigraphy, biostratigraphy, and magnetostratigraphy, we correlated these relatively shallow‐water deposits to the geomagnetic polarity time scale (GPTS). At the SSQ borehole, the upper Eocene to lower Oligocene section is apparently complete within our stratigraphic resolution (0.2–0.5 m.y.), allowing us to estimate the ages of several stratal surfaces. Late Eocene Sr isotope age estimates are as expected at the SSQ borehole, but Oligocene ages are ∼1 m.y. older than expected due to diagenesis. At the Bay Minette borehole, a latest Eocene‐earliest Oligocene and a late early Oligocene hiatus were detected. We correlate these two hiatuses and stratal surfaces at SSQ with global δ18O increases inferred to represent glacioeustatic lowerings and with evidence for hiatuses on other continental margins: (1) a distinct disconformity at the base of the Chickasawhay Limestone at both boreholes and a hiatus at Bay Minette correlates with a global δ18O increase; we revise the age of this surface (equivalent to the TB 1.1 sequence boundary) making it ∼2 m.y. older than previously reported; and (2) a surface at the top of the Shubuta Member (lowermost Oligocene) has been interpreted both as a condensed section and a disconformity; this surface at SSQ and a hiatus at Bay Minette correlate with a sharp global δ18O increase and with hiatuses on the New Jersey and Irish margins. The timing of the hiatuses and stratal surfaces correlates with the inflection of the δ18O increases and not with the maximum values, supporting models that indicate that unconformities form during the maximum rates of

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号