...
首页> 外文期刊>International Journal of Coal Geology >A model of coal–gas interaction under variable temperatures
【24h】

A model of coal–gas interaction under variable temperatures

机译:变温下煤气相互作用模型

获取原文
获取原文并翻译 | 示例

摘要

Although coal–gas interactions have been comprehensively investigated, fewer studies consider the impact of thermal effects. In this study, a fully coupled model of coal deformation, gas transport, and thermal transport is developed and solved using the finite element method. A general model is developed to describe the evolution of coal porosity under the combined influence of gas pressure, thermally induced solid deformation, thermally induced gas adsorption change, and gas-desorption-induced solid deformation. This porosityevolution relationship is implemented into a fully coupled model for coal deformation, gas transport, and thermal transport using the finite element (FE) model. The FE model represents important nonlinear responses due to the effective stress effects that cannot be recovered where mechanical influences are not rigorously coupled with the gas and the thermal transport systems. The controlling effects of gas pressure, temperature and gas sorption on these nonlinear responses of coal porosity and permeability to gas production are quantified through a series of simulations. It is found that the gas-desorption-induced deformation is the most important factor that controls these nonlinear responses. In this work, among the factors such as thermal expansion of solid and gas, and convective heat flux, in addition to the thermal diffusion, the heat sink due to thermal dilatation of gas is most prominent factor in altering the temperature of coal seam. This conclusion demonstrates that the thermal impact on coal–gas interactions cannot be neglected especially where the temperature is high.
机译:尽管煤气相互作用已经得到全面研究,但考虑热效应影响的研究较少。本研究建立并利用有限元方法求解了煤变形、气体输运和热输运的全耦合模型。建立了一个通用模型,描述了煤气孔隙度在瓦斯压力、热诱导固体变形、热诱导气体吸附变化和气体脱附诱导固体变形的共同影响下的变化。使用有限元 (FE) 模型将这种孔隙度演变关系实现到煤变形、气体输送和热输送的完全耦合模型中。有限元模型表示重要的非线性响应,这是由于在机械影响未与气体和热传输系统严格耦合的情况下无法恢复的有效应力效应。通过一系列模拟,量化了瓦斯压力、温度和气体吸附对煤孔隙度和渗透率对产气非线性响应的控制作用。研究发现,气体脱附引起的变形是控制这些非线性响应的最重要因素。在这项工作中,在固气热膨胀、对流热通量等因素中,除热扩散外,气体热膨胀引起的散热片是改变煤层温度的最突出因素。这一结论表明,热对煤气相互作用的影响不容忽视,尤其是在温度较高的地方。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号