首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Bromine-induced aromatic alkylation and dienone-phenol rearrangements
【24h】

Bromine-induced aromatic alkylation and dienone-phenol rearrangements

机译:溴诱导的芳香族烷基化和二烯酮-苯酚重排

获取原文
获取外文期刊封面目录资料

摘要

1166 J. CHEM. SOC. PERKIN TRANS. I 1989 Bromine-induced Aromatic Alkylation and Dienone-phenol Rearrangements Xiaolian Shi,t Roberta Day, and Bernard Miller * Department ofChemistry, University of Massachusetts, Amherst, MA 0 7 003, U.S.A. The first examples of a 'Friedel-Crafts' alkylation resulting from bromination of an afkene and of a dienone-phenol rearrangement resulting from bromination of an enone are reported. Addition of bromine to isolated double bonds is one of the oldest and most reliable reactions in organic chemistry. Side reactions (aside from the intervention of nucleophiles other than bromide ion) are rare, but Wagner-Meerwein type migrations do occur during reaction of bromine with alkenes which are exceptionally prone to rearrangement, such as those in the pinene' or norbornene2 series or those from which p-methoxyphenonium ions may be formed as intermediates3 Despite this evidence that the addition of bromine to isolated double bonds can result in reactions typical of carbonium ions, no reaction has previously been reported in which such attack results in alkylation of an unactivated aromatic ring in a Friedel-Crafts-like process.This is not surprising in view of the very vigorous conditions normally necessary for alkylations of aromatic rings. We now report the first example of alkylation of an unactivated aromatic ring during reaction of bromine with a cycloalkene. Reaction of 1,l-dibenzyl-3,4-dihydronaphthalen-2(1H)-one with toluene-p-sulphonohydrazide(2.8 equiv.) and hydrochloric t Visiting Scholar from Zhejiang University, Hangzhou, PRC.acid (1.4 equiv.) in refluxing methanol for 36 h converted the ketone into its toluene-p-sulphonylhydrazone,m.p. 176 178 "C (decomp.). Slow addition of butyl-lithium (2.1 equiv.) to a suspension of the hydrazone in tetrahydrofuran at OOC, followed by stirring at room temperature for 2 h, yielded the hydrocarbon (1) as a yellow oil, which was purified by chromatography on neutral alumina, Slow addition of bromine (1.1 equiv.) to a solution of (1) in carbon tetrachloride at 0 "C resulted in rapid decolourization of the bromine, but hydrogen bromide was produced during the reaction. No evidence could be obtained for formation of the expected addition product.Instead, evaporation of the solvent yielded a single compound as colourless crystals (m.p. 164-165 "Cfrom absolute ethanol). J. CHEM. SOC. PERKIN TRANS. I 1989 X-Ray crystallographic analysis established the structure of the product as the bicycloC3.3. llnonane derivative (2).* Molecular models of (1) indicate that in the preferred conformation one benzyl group lies over one face of the nonaromatic ring. This assignment is supported by the n.m.r. spectrum of (l),which shows the C-4 methylene signal at 6 2.63 p.p.m., markedly upfield from the corresponding signal which appears at 6 3.35 p.p.m. in the spectrum of 1,l-dimethyl-1,4- dihydronaphthalene. A cyclic bromonium ion derived from (1) would be expected to have a similar conformation (3).In this conformation the 'endo' benzyl group would interfere with nucleophilic attack at C-2 and C-3, and also interfere with the abstraction of those hydrogens unti to the bromine atom, thus inhibiting both addition and substitution reactions. Ph Intermediate (3), however, seems well suited for a rearrangement process, since migration of a benzyl substituent would result in formation of a tertiary, benzylic carbonium ion. A similar migration process does occur during reaction of bromine with ketone (4), m.p. 121.5-122"C, which was prepared by oxidation of (1) with t-butyl chromate (1.4 equiv.). Unlike (l), ketone (4) did not react with bromine in carbon tetrachloride solution, but addition of bromine (1.2 equiv.) to a solution of (4) in acetonitrile at room temperature resulted in loss of the bromine colour.Hydrogen bromide was again * Crystal data: C,,H,,Br, M = 389.34. Triclinic space group Pi (No.2), a = 9.566(3), b = 12.097(4), c = 18.341(4) A, a = 71.41(2), = 75.10(2), y = 66.97(3), I/ = 1 825.6(9) A3, 2 = 4, D, = 1.413 g ~m-~, F(000) = 800, p(Mo-K,) = 22.3 cm-'. 'The crystal used for the study (cut to dimensions of 0.33 x 0.33 x 0.50 mm) was mounted in a thin- walled glass capillary tube which was sealed as a precaution against moisture sensitivity. Preliminary examination and data collection were performed with graphite monochromated Mo-K, radiation (A = 0.710 73 A) on an Enraf-Nonius CAD4 diffractometer at an ambient temperature of 23 -+_ 2 "C. A total of 4 181 unique reflections were measured (+h, amp; k, amp; 1; 0 -20 scan mode, 28,,,.= 43"). An empirical absorption correction based on psi scans was applied (0.767 to 1.00on I). The structure was solved by using Patterson and difference Fourier techniques and was refined by full-matrix least-squares methods function minimized: w(lF,,I -FJ2, w: = 2F0L,/0,. Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in idealized positions as fixed isotropic scatterers. The final agreement factors were R = 0.035 and R, = 0.045 for the 2 964 reflections having I 2 30,. All computations were performed on a Microvax I1 computer using the Enraf-Nonius SDP system of programs. Tables of atomic co-ordinates and bond lengths and angles are available on request from the Director of the Cambridge Crystal- lographic Data Centre, University of Cambridge Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW.Any request should be accompanied by the full literature citation for this communication. produced during the reaction. The sole product obtained from the bromination was the dienone-phenol rearrangement product, 3,4-dibenzyl-2-bromo-l-naphthol(5) (m.p. 143.5- 145 "C from ethanol). The structure of (5) was established by elemental analysis, spectroscopy, and independent synthesis by bromination of 3,4-dibenzyl- 1 -naphthol obtained by rearrange-ment of (4) in sulphuric acid-acetic acid. Ph Q t)H (4) (5) Ketone (4) was recovered unchanged from solution in acetonitrile saturated with hydrogen bromide, demonstrating that rearrangement to (5)must have occurred during reaction with bromine.This is the first reported example of a dienone-phenol rearrangement occurring under such conditions; other amp;unsaturated ketones either simply add bromine to form dibromides or eliminate HBr to yield 2-bromo-2-en- 1-one derivatives. The formation of (5)therefore suggests that the endo benzyl group in the reactive intermediate arising from bromination of (4) can inhibit even the normally facile abstraction of a proton a to a carbonyl group. The 'Friedel-Crafts' process which occurs during bromination of (1) is not observed in the case of (4); this may be due in part to such a reaction requiring the generation of a higher degree of positive charge on the attacking carbon than is compatible with the presence of the carbonyl group at C-1.In addition, previous studies have demonstrated that benzyl is an excellent migrating group in dienone-phenol rearrangements: but is sometimes less effective in simple Wagner-Meerwein ~hifts.~,~ Nonetheless, it is surprising that migration of a benzyl group during the bromination of (1) should occur so much more slowly than the normally higher energy electrophilic attack on an unactivated aromatic ring. Acknowledgements We thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, for a grant which supported this work. References 1 0.Wallach, Liebigs Ann. Chem., 1891, 1,264. 2 J. D. Roberts, E. R. Trumbull, W. Bennett, and R. Armstrong, J. Am. Chem. SOC.,1950, 72, 3116; H. Kwart and L. Kaplan, ibid., 1954, 76, 4072; L. Kaplan, H. Kwart, and P. von R. Schleyer, ihid., 1960, 82, 2341; S. Winstein, ibid., 1961,83, 1516. 3 K. Otsuki and T. Irino, Chem. Pharm. Bull., 1975, 23, 646; P. R. R. Costa and J. A. Rabi, Tetrahedron Lett., 1975,4535. 4 B. Miller, J. Am. Chem. Soc., 1970,92, 6252; 1974,96, 7155. 5 P. Warrick, Jr., and W. H. Saunders, Jr., J. Am. Chem. Soc., 1962,84, 4095. 6 H. 0.House, E. J. Grubbs, and W. F. Gannon, J. Am. Chem. SOC., 1960, 82, 4099; J. R. Owen and W. H. Saunders, Jr., ibid., 1966, 88, 5809. Received 27th September 1988 (Accepted 3 1st January 1989); Paper 9/00518H
机译:1166 J. CHEM. SOC. PERKIN 译.I 1989 溴诱导的芳香烷基化和二烯酮-苯酚重排 Xiaolian Shi,t Roberta Day, and Bernard Miller * 马萨诸塞大学化学系,马萨诸塞州阿默斯特,马萨诸塞州 0 7 003,美国报道了由烯烃溴化产生的“傅-工艺品”烷基化和烯酮溴化产生的二烯酮-苯酚重排的第一个例子。在分离的双键中加入溴是有机化学中最古老、最可靠的反应之一。副反应(除了溴化物离子以外的亲核试剂的干预)很少见,但在溴与特别容易重排的烯烃反应期间确实会发生 Wagner-Meerwein 型迁移,例如蒎烯或降冰片烯2 系列中的那些或那些可能形成对甲氧基苯铵离子作为中间体的那些3 尽管有证据表明,将溴添加到分离的双键中会导致典型的碳离子反应, 以前没有报道过这种攻击导致未活化的芳香环在类似 Friedel-Crafts 的过程中烷基化的反应。鉴于芳香环烷基化通常需要非常活跃的条件,这并不奇怪。我们现在报告了溴与环烯烃反应过程中未活化芳香环烷基化的第一个例子。1,l-二苄基-3,4-二氢萘-2(1H)-酮与甲苯对磺酰肼(2.8当量)和盐酸t反应 浙江大学访问学者,杭州,中国浙江大学(1.4当量)在回流甲醇36 h中将酮转化为甲苯对磺酰腙,m.p. 176 178“C (decomp.)。在OOC下将丁基锂(2.1当量)缓慢加入到四氢呋喃中的腙悬浮液中,然后在室温下搅拌2小时,得到黄色油状烃(1),通过色谱法在中性氧化铝上纯化, 在0“C下将溴(1.1当量)缓慢加入到(1)的四氯化碳溶液中,导致溴的快速脱色, 但是在反应过程中产生了溴化氢。无法获得预期添加产物形成的证据。取而代之的是,溶剂的蒸发产生单一化合物作为无色晶体(m.p. 164-165“Cfrom absolute ethanol)。J. CHEM. SOC. PERKIN 译.I 1989年X射线晶体学分析确定产物的结构为双环C3.3。(1)的分子模型表明,在优选构象中,一个苄基位于非芳香环的一面上。(l)的n.m.r.谱支持这一分配,该谱显示了C-4亚甲基信号在6 2.63 p.p.m.,与1,l-二甲基-1,4-二氢萘光谱中出现在6 3.35 p.p.m.的相应信号明显相反。从(1)衍生的环状溴离子预计具有类似的构象(3)。在这种构象中,“内切”苄基会干扰 C-2 和 C-3 的亲核攻击,并且还会干扰这些氢向溴原子的提取,从而抑制加成和取代反应。然而,Ph 中间体 (3) 似乎非常适合重排过程,因为苄基取代基的迁移会导致形成叔苄基碳离子。在溴与酮(4)反应过程中确实发生了类似的迁移过程,熔点为121.5-122“C,这是通过(1)与铬酸叔丁酯(1.4当量)氧化制备的。与(l)不同,酮(4)不与四氯化碳溶液中的溴反应,但在室温下将溴(1.2当量)添加到(4)的乙腈溶液中会导致溴色的损失。溴化氢再次*晶体数据:C,,H,,Br,M=389.34。三斜晶系空间群 Pi (No.2), a = 9.566(3), b = 12.097(4), c = 18.341(4) A, a = 71.41(2), = 75.10(2), y = 66.97(3), I/ = 1 825.6(9) A3, 2 = 4, D, = 1.413 g ~m-~, F(000) = 800, p(Mo-K,) = 22.3 cm-'.“用于研究的晶体(切割尺寸为0.33 x 0.33 x 0.50毫米)安装在薄壁玻璃毛细管中,该管被密封以防止湿气敏感。用石墨单色Mo-K进行初步检查和数据收集,辐射(A = 0.710 73 A) 在环境温度为 23 -+_ 2 “C 的 Enraf-Nonius CAD4 衍射仪上。总共测量了4 181个独特的反射(+h,&k,&1;0-20扫描模式,28,,,.= 43“)。应用基于 psi 扫描的经验吸收校正(I 上为 0.767 至 1.00)。采用Patterson和差分傅里叶技术求解了该结构,并采用全矩阵最小二乘法[函数最小化:w(lF,,I -FJ2,w:= 2F0L,/0,]。非氢原子被各向异性精炼。氢原子作为固定各向同性散射体包含在理想化位置。对于具有 I 2 30 的 2 964 个反射,最终一致性因子为 R = 0.035 和 R, = 0.045。所有计算均使用 Enraf-Nonius SDP 程序系统在 Microvax I1 计算机上执行。原子坐标、键长和角度表可向剑桥大学化学实验室剑桥晶体学数据中心主任索取,地址为Lensfield Road, Cambridge CB2 1EW。任何请求都应附有本函件的完整文献引文。反应过程中产生。从溴化反应中获得的唯一产物是二烯酮-苯酚重排产物,3,4-二苄基-2-溴-L-萘酚(5)(m.p. 143.5-145“C来自乙醇)。通过元素分析、光谱学和3,4-二苄基-1-萘酚的溴化独立合成[通过(4)在硫酸-乙酸中的重排得到]建立了(5)的结构。Ph Q t)H (4) (5) 酮 (4) 从用溴化氢饱和的乙腈溶液中回收不变,表明在与溴反应期间一定发生了重排到 (5)。这是首次报道在这种条件下发生二烯酮-苯酚重排的例子;其他不饱和酮要么简单地加入溴形成二溴化物,要么消除HBr产生2-溴-2-烯-1-酮衍生物。因此,(5)的形成表明,由(4)的溴化反应产生的反应性中间体中的内苄基甚至可以抑制质子a通常很容易提取到羰基。在(4)的情况下,没有观察到(1)溴化过程中发生的“Friedel-Crafts”过程;这可能部分是由于这种反应需要在攻击碳上产生比 C-1.In 加成时羰基的存在相容的更高程度的正电荷,先前的研究表明,苄基是二烯酮-苯酚重排中优良的迁移基团:但有时在简单的Wagner-Meerwein~hifts中效果较差。~,~ 尽管如此,令人惊讶的是,在(1)的溴化过程中,苄基的迁移应该比通常高能的亲电攻击对未活化的芳香环的亲电攻击慢得多。致谢 我们感谢由美国化学学会管理的石油研究基金的捐助者为这项工作提供资助。参考文献 1 0.Wallach, Liebigs Ann. Chem., 1891, 1,264.2 J. D. Roberts, E. R. Trumbull, W. Bennett, and R. Armstrong, J. Am. Chem. SOC.,1950, 72, 3116;H. Kwart and L. Kaplan, 同上, 1954, 76, 4072;L. Kaplan, H. Kwart, and P. von R. Schleyer, ihid., 1960, 82, 2341;S. Winstein,同上,1961,83,1516。3 K. Otsuki 和 T. Irino, Chem. Pharm. Bull., 1975, 23, 646;P. R. R. Costa 和 J. A. Rabi,Tetrahedron Lett.,1975,4535。4 B. Miller, J. Am. Chem. Soc., 1970,92, 6252;1974,96, 7155.5 P. Warrick, Jr. 和 W. H. Saunders, Jr., J. Am. Chem. Soc., 1962,84, 4095.6 H. 0.House, E. J. Grubbs, and W. F. Gannon, J. Am. Chem. SOC., 1960, 82, 4099;J. R. Owen and W. H. Saunders, Jr.,同上,1966年,第88页,第5809页。收稿日期: 1988 年 9 月 27 日(收稿日期: 1989 年 1 月 3 日);文件 9/00518H

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号