首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers, Part C. Journal of mechanical engineering science >Crossed patch arrangements of linear triangular elements for upper bound finite-element analysis of plane strain deformation problems
【24h】

Crossed patch arrangements of linear triangular elements for upper bound finite-element analysis of plane strain deformation problems

机译:Crossed patch arrangements of linear triangular elements for upper bound finite-element analysis of plane strain deformation problems

获取原文
获取原文并翻译 | 示例
           

摘要

In standard linear finite-element formulations, volumetric locking because of the incompressibility constraint that may occur in computational plasticity is often encountered. This study uses crossed patch arrangements of triangles to form quadrilateral elements in order to overcome the locking in the upper bound finite-element analysis of plane strain deformation problems. The velocity field is described in terms of linear triangular elements, while the incompressibility constraint is imposed by quadrilateral elements. Rigid, perfectly plastic materials, and strain hardening materials that form the von Mises model have been considered. The velocity formulation is presented and has been implemented in a finite-element code. Several examples, some benchmarks problems, are presented to illustrate the applicability of the approach for predicting the load, strain, and velocity field during the plastic deformation. Numerical results show that the crossed patch arrangements of linear triangular elements are free of volumetric locking and achieve well-defined limit loads. This study shows that the presented method can be used to simulate large plastic deformation under plane strain conditions.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号