首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Diastereoselective acyclic aza-2,3 Wittig sigmatropicrearrangements
【24h】

Diastereoselective acyclic aza-2,3 Wittig sigmatropicrearrangements

机译:非对映选择性无环氮杂-2,3Wittig sigmatropicrearrangement

获取原文
获取外文期刊封面目录资料

摘要

J. Chem. Soc. Perkin Trans. 1 1997 1517 Diastereoselective acyclic aza-2,3 Wittig sigmatropic rearrangements James C. Anderson,*,dagger;,a Stephen C. Smith b and Martin E. Swarbrick a a Department of Chemistry University of Sheffield Sheffield UK S3 7HF b Zeneca Agrochemicals Jealottrsquo;s Hill Research Station Bracknell Berkshire UK RG42 6EY The scope of anion-stabilising groups in promoting and controlling the diastereoselection of the aza-2,3 Wittig sigmatropic rearrangement has been assessed by the syntheses of allylic amines 1cndash;g that have incorporated SiPhMe2 Ph SPh SOPh and SO2Ph respectively at the C-2 position. The subsequent anionic 2,3-sigmatropic rearrangements are analysed with respect to the extent of diastereoselection of the product homoallylic amines 2 and 3. It appears that silicon not only is the most efficient at electronically facilitating this rearrangement but its steric bulk controls the diastereoselectivity of the process exclusively.Phenyl and phenylthio substituents also have a similar but decreased effect on diastereoselection that mirrors their lower steric bulk in comparison to the silicon derivative. Sulfoxide and sulfone substituents are incompatible with the reaction conditions required for rearrangement. Introduction Despite the numerous synthetic applications of the 2,3 Wittig sigmatropic rearrangement of allylic ethers (Scheme 1 X = O),1 the use of the aza congener (Scheme 1 X = N) has been limited by the reluctance of simple allyl amines to undergo this transformation. 2 The first unequivocal example of this rearrangement 3 which is driven by relief of ring strain has been extended by others to include vinyl aziridines.4 The 2,3- rearrangement of N-allyl nitrogen ylides has been shown to be potentially useful.2e We have concentrated our efforts on the acyclic variant of this rearrangement and want to develop the aza-2,3 Wittig sigmatropic process into a versatile method for the preparation of unnatural amino acids.To this end we have managed to markedly accelerate our preliminary reaction 5 and control the diastereoselectivity of the acyclic rearrangement by the incorporation of a trimethylsilyl group at the C-2 position of our substrate (Scheme 2).6 We believe the silicon atom due to its ability to stabilise adjacent negative charge,7 is stabilising the transition state,8 thus reducing the activation energy of the reaction.The inherent bulk of the silyl group is dictating the diastereoselection.6 This strategy has allowed the acyclic Scheme 1 X R1 R2 HX R1 R2 X = O NR3 anionic 2,3 shift Scheme 2 Reagents and conditions BuLi Et2Ondash;HMPA (4 1); a X = H 278 to 240 8C 14 h 82; b X = SiMe3 278 8C 10 min 88 N Me Ph Boc X HN Me Ph Boc HN Me Ph Boc X X a X = H ds ratio of 2:3 = 3:2 b X = SiMe3 ds ratio of 2:3 = 1:20 3 1a X = H 1b X = SiMe3 + 2 2 dagger;E-mail j.anderson@sheffield.ac.uk aza-2,3 Wittig rearrangement to become more applicable to a wider range of substrates.9 We report here the first examples of other anion-stabilising groups successfully incorporated into rearrangement precursors 1 that both facilitate and increase the synthetic scope of the aza-2,3 Wittig rearrangement.Our first concern was that we could not remove the trimethylsilyl group from 3 presumably because the accepted mechanism would require the formation of an incipient primary carbocation. 10 Although there is a rich chemistry associated with vinyl silanes 10 that could be applied to compounds such as 3 our methodology would be more versatile if the silyl group could also be removed at an early stage. An added incentive was that we could obtain unambiguous proof of diastereoselection from the desilylated product 3 (X = H).5 Following an isolated report that the phenyldimethylsilyl group could be removed from the C-2 position of a vinyl silane with tetrabutyl ammonium fluoride (TBAF),11 we sought to obtain 1c (X = SiPhMe2). We were also interested in the rearrangements of compounds analogous to 1 where X = Ph SPh S(O)Ph and SO2Ph (1dndash;g respectively); as all these groups are capable of stabilising an adjacent negative charge and could control diastereoselectivities in a manner similar to that found with SiMe3 (vide supra).Results and discussion Allylic alcohols 4cndash;e were prepared from the addition of the corresponding a-lithio-a-substituted vinyl precursors to acetaldehyde. In the case of the phenyldimethylsilane derivative 4c we had to develop a reliable synthesis of (1-bromovinyl)- phenyldimethylsilane based upon a description in the literature of the triphenyl congener.12 Addition of bromine to phenyldimethylvinylsilane and then elimination of hydrogen bromide with refluxing pyridine produced the desired halide in 62 yield. Allylic alcohols 4cndash;e were then transformed into the desired rearrangement precursors 1cndash;e via the established procedure for stereoselective conversion of secondary allylic alcohols to allyl amides 5cndash;e (Scheme 3).13 Compounds 1f and 1g were obtained from the controlled oxidation of 1e.Rearrangement of 1c was carried out by treatment with BuLi at 278 8C in tetrahydrofuran (THF) for 14 h to give the rearranged product 3c in 81 yield with complete diastereoselectivity (Scheme 4). This diastereoisomer exhibited characteristic chemical shifts in its NMR spectrum that we had used to assign the trimethylsilyl analogue (Table 1).6 Treatment with 1518 J. Chem. Soc. Perkin Trans. 1 1997 TBAF in DMSO under standard literature conditions 11 produced a single diastereoisomer of the desilylated product in 47 yield. This compound had an identical NMR spectrum to the minor diastereoisomer 3a (Scheme 3) obtained from our first rearrangement the structure of which had been proven by correlation to authentic isoleucine.5 Treatment of 1d with BuLi in THFndash;HMPA (4 1) at 278 8C and then at 240 8C for 14 h led to a mixture of 2d and 3d in 71 yield with a diastereoisomeric ratio of 1 7 (Scheme 5).Similarly treatment of 1e under identical conditions led to an inseparable mixture by chromatography of 2e N-tert-butoxycarbonylbenzylamine and 3e in 49 yield with a ratio of 1 2 4 (Scheme 5). Samples of pure diastereoisomers 3d and 3e could be obtained by trituration of the chromatographed mixed prod- Scheme 3 Reagents and conditions i ButLi Et2O 278 8C MeCHO; ii BuLi TMEDA THF 278 8C MeCHO; iii KH cat. Cl3CCN; iv xylenes 140 8C; v (Boc)2O then NaOH; vi KH BnBr; vii mCPBA; viii Oxone Br SiPhMe2 Br Ph SPh OH Me X NH Me Boc X N Me Ph Boc X 4c X = SiPhMe2 86 4d X = Ph 89 4e X = SPh 69 5c 40 5d 61 5e 41 1c 95 1d 94 1e 82 1f X = S(O)Ph 90 1g X = SO2Ph 95 i iii iv v vii i ii viii Scheme 4 Reagents and conditions i BuLi THF 278 8C 14 h; ii TBAF DMSO 100 8C 2 h N Me Ph Boc SiPhMe2 HN Me Ph Boc Me2PhSi HN Me Ph Boc 3c 1c 3a i ii Scheme 5 Reagents and conditions i BuLi THFndash;HMPA (4 1) 278 8C 1 h then 240 8C 14 h HN Me Ph Boc HN Me Ph Boc X X N Me Ph Boc X 1d X = Ph 1e X = SPh 2d,e 3d,e + i Table 1 Selected NMR data for 2 and 3 1b 1c 1d 1e X SiMe3 SiPhMe2 Ph SPh Diastereoselectivity a 2 3 1 20 3 only 1 7 1 4 d Me groups 2; 3 b 1.02; 0.66 0.53 0.80; 0.70 1.13; 0.76 J C-1Hndash;C-2H 3 10.4 9.6 9.5 9.8 a Ratios of unpurified products determined by 250 MHz NMR.b 2H6DMSO. ucts with cold light petroleum in 59 and 26 yield respectively. The diastereoselection could be ascertained from inspection of selected NMR characteristics (Table 1). As with the trimethylsilyl derivative the large C-1Hndash;C-2H coupling constant (Fig. 1) suggested conformations where the methyl substituents of the major diastereoisomer were shielded by the proximal phenyl ring.6 This analysis was supported by the conversion of 3c to 3a (vide supra). These results support the proposed transition state model6 (Scheme 6) for these rearrangements. The change in the extent of diastereoselection nicely mirrors the decrease in the steric bulk of the anion-stabilising vinyl substituents X in the order PhMe2Si Ph SPh.We expected the sulfoxide 1f and sulfone 1g analogues to behave similarly; 1f offering the potential of a chiral anionstabilising vinyl substituent that could control the enantioselection of this particular variant of the process. Unfortunately treatment of 1f with BuLi under standard conditions led only to the desulfurised starting material 1a (30) and N-tert-butoxycarbonylbenzylamine (48) (Scheme 7). Treatment of 1g and 1f under a range of similar conditions led to complex mixtures of products none of which could be identified. We can only conclude that the sulfoxide and sulfone substituents render the system incompatible towards the strong base necessary to facilitate the anionic sigmatropic rearrangement. Fig. 1 HN Ph Me Boc HN Ph Me Boc H HNBoc Ph H Me H Ph BocNH H Me X X X X 3 1 1 2 2 Scheme 6 Transition-state model for major diastereoisomer Me H N Ph Boc X Me H N Ph Boc X N Me Ph Boc X HN Me Ph Boc X d- d- 1 3 Scheme 7 Reagents and conditions i BuLi THFndash;HMPA (4 1) 278 8C 1 h then 240 8C 14 h N Me Ph Boc (O)SPh N Me Ph Boc Boc Ph HN + 1a 30 48 i 1f J.Chem. Soc. Perkin Trans. 1 1997 1519 The aza-2,3 Wittig rearrangement has been shown to be accelerated by the incorporation of certain anion-stabilising vinyl substituents at the central vinyl carbon atom. The diastereoselection ranges from 4 1 to 20 1 depending on the steric bulk of the substituents X in allyl amines 1 with silyl substituents emerging as the front runners. The phenyldimethylsilyl group after its removal has verified our structural assignments and increases the synthetic utility of the silicon-stabilised aza- 2,3 Wittig rearrangement.The phenyl and phenylthio substituents further expand the process. The use of the rearranged precursors as synthetic building blocks will be reported shortly and the investigation of other less obvious accelerating groups are underway. Experimental General details Our general experimental details have been reported elsewhere.6 (1-Bromovinyl)phenyldimethylsilane Bromine (1.84 ml 0.036 mol 1 equiv.) in carbon tetrachloride (20 ml 1 2 times; 5 ml wash) was added dropwise via a cannula to a stirred solution of phenyldimethylvinylsilane (5.78 g 0.036 mol) in carbon tetrachloride (30 ml) at 0 8C. The solution was stirred for 10 min at 0 8C washed sequentially with saturated aqueous sodium hydrogen carbonate containing some sodium hydrogen sulfite (3 times; 50 ml) and brine (50 ml) dried over magnesium sulfate and concentrated in vacuo to give the crude dibromide (12.62 g) as a pale yellow oil.This crude product was dissolved in pyridine (50 ml) and refluxed for 14 h. After cooling to room temperature the dark brown reaction mixture was diluted with diethyl ether (100 ml) and washed with water (70 ml). The aqueous layer was further extracted with diethyl ether (2 times; 70 ml) and the combined organics washed repeatedly with a saturated copper sulfate solution until all of the pyridine had been removed as indicated by the aqueous phase retaining a light blue colour. The organics were then washed with brine (70 ml) dried over magnesium sulfate and concentrated in vacuo to give a pale brown oil (5.63 g) which was purified by flash column chromatography (15 times; 5 cm silica light petroleum) to give the bromovinylsilane (5.32 g 62) as a colourless oil (Found C 50.2; H 5.8; Br 33.4.C10H13BrSi requires C 49.8; H 5.4; Br 33.1); nmax(thin film)/cm21 3071 2962 1592 1429 1397 1250 1114 1070 915; dH(250 MHz; CDCl3) 0.49 6H s (CH3)2Si 6.17 (1H d J 1.7 CHH ) 6.35 (1H d J 1.7 CHH ) 7.30ndash;7.70 (5H m ArH); dC(63 MHz; CDCl3) 23.4 128.0 129.8 131.5 134.1 135.2 136.7; m/z (EI1) 241.9940 (31 M1. C10H13 81BrSi requires M 241.9949) 239.9962 (32 M1. C10H13 79BrSi requires M 239.9970) 227 (51)/225 (50 M1 2 CH3) 201 (100)/199 (100) 161 (23 M1 2 Br) 145 (37) 135 (97) 105 (46). 3-Phenyldimethylsilylbut-3-en-2-ol 4c tert-Butyllithium (15.5 ml of a 1.7 M solution in pentane 26.4 mmol 2.1 equiv.) was added dropwise to a stirred solution of (1-bromovinyl)phenyldimethylsilane (3.03 g 12.6 mmol) in diethyl ether (40 ml) at 278 8C.After complete addition the reaction was stirred for 1 h at 278 8C. A solution of acetaldehyde (1.40 ml 25.1 mmol 2 equiv.) in diethyl ether (10 ml) was then added dropwise via a cannula. After stirring for a further hour at 278 8C the reaction was allowed to warm to room temperature. Water (50 ml) was added the mixture separated and the aqueous layer extracted with diethyl ether (3 times; 30 ml). The combined organics were dried over magnesium sulfate and concentrated in vacuo to give a yellow oil (3.24 g) which was purified by flash column chromatography (15 times; 5 cm silica 15 ethyl acetatendash;light petroleum) to give 4c (2.23 g 86) as a colourless oil (Found C 69.4; H 8.8.C12H18OSi requires C 69.8; H 8.8); nmax(thin film)/cm21 3358 1428 1250 1111 845; dH(250 MHz; CDCl3) 0.42 (3H s CH3Si) 0.44 (3H s CH3Si) 1.20 (3H d J 6.4 CH3CH) 1.39 (1H d J 4.3 OH by D2O exchange) 4.44 (1H qdt J 6.4 4.3 1.2 CH3CH) 5.45 (1H dd J 2.4 1.2 CHH ) 5.91 (1H dd J 2.4 1.2 CHH ) 7.30ndash;7.65 (5H m ArH); dC(63 MHz; CDCl3) 22.3 22.1 24.1 71.7 124.7 127.9 129.1 133.9 138.4 155.0; m/z (EI1) 191.0893 (25 M1 2 CH3. C11H15OSi requires M 2 CH3 191.0892) 137 (100) 135 (44) 105 (12) 75 (26). 3-Phenylbut-3-en-2-ol 4d a-Bromostyrene (3 ml 23.1 mmol) was converted to 4d in an identical fashion to that for 4c and was purified by flash column chromatography (15 times; 5 cm silica 15 ethyl acetatendash;light petroleum) to give a pale straw coloured oil (3.06 g 89);14 dH(250 MHz; CDCl3) 1.32 (3H d J 6.4 CH3) 1.79 (1H d J 4.0 OH by D2O exchange) 4.82 (1H qd J 6.4 4.0 CHOH) 5.28 (1H t J 0.9 CHH ) 5.36 (1H t J 1.2 CHH ) 7.25ndash;7.45 (5H m ArH).3-Phenylthiobut-3-en-2-ol 4e Phenyl vinyl sulfide (5 ml 0.038 mol) in tetrahydrofuran (40 ml 1 2 times; 10 ml wash) was added dropwise via a cannula to a stirred solution of butyllithium (16.1 ml of a 2.5 M solution in hexane 0.040 mol 1.05 equiv.) and TMEDA (6.1 ml 0.040 mol 1.05 equiv.) in tetrahydrofuran (120 ml) at 278 8C. After stirring at 278 8C for 2 h a solution of acetaldehyde (4.2 ml 0.077 mol 2 equiv.) in tetrahydrofuran (10 ml 1 2 times; 2 ml wash) was added dropwise via a cannula. Upon complete addition the reaction was stirred for a further hour at 278 8C before being warmed to room temperature. Saturated aqueous ammonium chloride (100 ml) was added the mixture separated and the aqueous layer further extracted with diethyl ether (3 times; 70 ml).The combined organics were dried over magnesium sulfate and concentrated in vacuo to give a crude yellow oil (9.1 g) which was purified by flash column chromatography (15 times; 7 cm silica 20 ethyl acetatendash;light petroleum) to give the alcohol 4e (4.75 g 69) as a yellow oil;15 dH(250 MHz; CDCl3) 1.43 (3H d J 6.4 CH3) 1.93 (1H br s OH by D2O exchange) 4.37 (1H qt J 6.4 0.6 CHOH) 4.97 (1H d J 0.9 CHH ) 5.50 (1H d J 0.9 CHH ) 7.20ndash;7.50 (5H m ArH). Preparation of compounds 1 We have previously reported general methods for the preparation of 1 from 4 via 5.6 (Z)-N-tert-Butoxycarbonyl-2-(phenyldimethylsilyl)but-2-enylamine 5c. Compound 5c was prepared in 40 yield from 4c as a colourless oil; nmax(thin film)/cm21 3356 1703 1505 1366 1249 1171; dH(250 MHz; CDCl3) 0.41 6H s (CH3)2Si 1.42 9H s (CH3)3C 1.64 (3H dt J 7.0 1.2 CH3CH ) 3.77 (2H m NCH2CH ) 4.35 (1H br s NH by D2O exchange) 6.31 (1H qt J 7.0 1.2 CH3CH ) 7.30ndash;7.55 (5H m ArH); dC(63 MHz; CDCl3) 21.5 17.8 47.9 79.1 127.9 128.9 133.7 134.8 140.5 155.4; m/z (CI1) 306.1880 (13 MH1.C17H28NO2Si requires MH1 306.1889) 278 (17) 248 (13 M1 2 But) 234 (47) 172 (100) 135 (16) 57 (But). (E)-N-tert-Butoxycarbonyl-2-phenylbut-2-enylamine 5d. Compound 5d was prepared in 61 yield from 4d as a colourless oil; nmax(thin film)/cm21 3351 1704 1505 1366 1249 1172 702; dH(250 MHz; CDCl3) 1.40 9H s (CH3)3C 1.59 (3H dt J 7.0 1.2 CH3) 3.97 (2H m NCH2CH ) 4.55 (1H br s NH by D2O exchange) 5.71 (1H q J 7.0 CH ) 7.15ndash;7.40 (5H m ArH); dC(63 MHz; CDCl3) 14.5 28.4 47.4 79.1 123.0 127.0 128.2 128.7 138.3 139.6 155.8; m/z (EI1) 247.1575 (3.8 M1.C15H21NO2 requires M 247.1572) 191 100 MH1 2 (CH3)3C 176 (9) 146 (6) 130 (37) 115 (8). (E)-N-tert-Butoxycarbonyl-2-phenylthiobut-2-enylamine 5e. Compound 5e was prepared in 41 yield from 4e as a yellow solid mp 52ndash;54 8C (Found C 64.4; H 7.5; N 4.9; S 11.6. C15H21NO2S requires C 64.5; H 7.6; N 5.0; S 11.5); nmax(thin film)/cm21 3348 1702 1584 1507 1478 1366 1249 1170; dH(250 MHz; CDCl3) 1.41 9H s (CH3)3C 1.90 (3H dt J 6.7, 1520 J. Chem. Soc. Perkin Trans. 1 1997 1.2 CH3) 3.77 (2H d J 5.5 NCH2) 4.77 (1H br s NH by D2O exchange) 6.25 (1H q J 6.7 CH3CH ) 7.15ndash;7.30 (5H m ArH); dC(63 MHz; CDCl3) 15.5 28.4 46.4 79.3 126.1 128.9 129.0 130.8 133.6 134.6 155.6; m/z (EI1) 279.1291 (32 M1.C15H21NO2S requires M 279.1293) 223 MH1 2 (CH3)3C 74 162 (96) 149 (37) 129 (22) 114 (92) 57 (100). (Z)-N-tert-Butoxycarbonyl-N-2-(phenyldimethylsilyl)but-2- enylbenzylamine 1c. Compound 1c was prepared in 95 yield from 5c as a colourless oil; nmax(thin film)/cm21 1694 1454 1410 1365 1248 1168 1111; dH(250 MHz; CDCl3) 0.38 6H s (CH3)2Si 1.45 9H s (CH3)3C 1.67 (3H dt J 7.0 1.5 CH3CH ) 3.93 (2H br m NCH2) 4.31 (2H br m NCH2) 6.12 (1H q J 7.0 CH3CH ) 7.10ndash;7.55 (10H m ArH); dC(63 MHz; CDCl3) 21.5 17.7 28.4 48.7 51.9 79.6 126.7 127.1 127.6 127.8 128.4 128.8 133.6 138.4 139.0 155.9; m/z (EI1) 395.2279 (9 M1. C24H33NO2Si requires M 395.2281) 338 17 M1 2 (CH3)3C 324 (60) 262 (100) 135 (51) 91 (65). (E)-N-tert-Butoxycarbonyl-N-(2-phenylbut-2-enyl)benzylamine 1d.Compound 1d was prepared in 94 yield from 5d as a pale yellow oil (Found C 78.1; H 8.0; N 3.95. C22H27NO2 requires C 78.3; H 8.1; N 4.15); nmax(thin film)/cm21 1694 1454 1416 1365 1243 1167 1124 879 700; dH(250 MHz; CDCl3) 1.30 9H s (CH3)3C 1.55 (3H m CH3) 3.87ndash;4.40 (4H m CH2NCH2) 5.50 (1H m CH ) 7.00ndash;7.30 (10H m ArH); dC(63 MHz; CDCl3) 14.4 28.3 48.3 52.6 79.5 123.5 124.0 126.9 127.1 127.4 128.1 128.4 128.8 137.3 138.3 155.7; m/z (EI1) 337.2037 (7 M1. C22H27NO2 requires M 337.2042) 281 74 MH1 2 (CH3)3C 132 (27) 91 (100) 57 (46). (E)-N-tert-Butoxycarbonyl-N-(2-phenylthiobut-2-enyl)benzylamine 1e. Compound 1e was prepared in 82 yield from 5e as a yellow oil; nmax(thin film)/cm21 1695 1584 1477 1453 1410 1365 1244 1167 1117 878; dH(250 MHz; CDCl3) 1.40 9H s (CH3)3C 1.94 (3H dt J 6.7 1.5 CH3) 3.87 (2H m NCH2) 4.38 (2H m NCH2) 6.03ndash;6.17 (1H m CH3CH ) 7.05ndash;7.35 (10H m ArH); dC(63 MHz; CDCl3) 15.4 28.3 49.1 51.1 79.8 125.8 127.1 127.3 127.9 128.3 128.9 133.4 135.2 138.0 155.9; m/z (EI1) 369.1770 (0.8 M1.C22H27NO2S requires M 369.1763) 313 1.2 MH1 2 (CH3)3C 296 (4) 204 (100) 91 (58) 57 (25). (E)-N-tert-Butoxycarbonyl-N-(2-phenylsulfinylbut-2-enyl)- benzylamine 1f m-Chloroperbenzoic acid (0.56 g 1 equiv.) was added portionwise to a stirred solution of (E)-N-tert-butoxycarbonyl-N- (2-phenylthiobut-2-enyl)benzylamine 1e (1.20 g) in dichloromethane (30 ml) at room temperature. After 1 h further dichloromethane (20 ml) was added and the reaction mixture washed with saturated aqueous sodium hydrogen carbonate (3 times; 50 ml) dried over magnesium sulfate and concentrated in vacuo to give a yellow oil (1.60 g).This was purified by flash column chromatography (15 times; 3 cm silica 30 ethyl acetatendash; light petroleum) to give the sulfoxide 1f (1.13 g 90) as a viscous pale yellow oil; nmax(thin film)/cm21 1694 1454 1415 1366 1247 1166 1044 749 697; dH(250 MHz; CDCl3) 1.37 9H m (CH3)3C 2.18 (3H dt J 7.3 1.6 CH3) 3.60ndash;4.30 (4H m CH2NCH2) 5.90ndash;6.30 (1H m CH3CH ) 7.00ndash;7.55 (10H m ArH); dC(63 MHz; CDCl3) 14.9 28.3 42.2 50.1 80.1 123.9 127.2 127.7 128.4 129.1 131.7 134.6 138.1 140.6 142.6 155.8; m/z (EI1) 385.1709 (19 M1. C22H27NO3S requires M 385.1712) 329 16 MH1 2 (CH3)3C 312 25 M1 2 (CH3)3CO 284 15 M1 2 (CH3)3COCO 268 (47 M1 2 PhSO) 204 (100) 158 (35) 144 (40). (E)-N-tert-Butoxycarbonyl-N-(2-phenylsulfonylbut-2-enyl)- benzylamine 1g A suspension of Oxone (5.79 g 3 equiv.) and water (15 ml) was added portionwise to a stirred solution of 1e (1.16 g) in methanol (25 ml) at 0 8C.Upon complete addition the reaction was warmed to room temperature and stirred for 14 h. The methanol was removed in vacuo the residue partitioned between water (15 ml) and dichloromethane (15 ml) the organic layer was separated and the aqueous layer further extracted with dichloromethane (3 times; 15 ml). The combined organics were dried over magnesium sulfate and concentrated in vacuo to give a crude yellow oil which was purified by flash column chromatography (15 times; 3 cm silica 20 ethyl acetatendash; light petroleum) to give the sulfoxide 1g (1.20 g 95) as a viscous pale yellowndash;green oil; nmax(thin film)/cm21 1694 1447 1410 1366 1305 1247 1159 1137 1083 729 690; dH(250 MHz; CDCl3) 1.40 9H m (CH3)3C 2.15 (3H dt J 7.6 1.5 CH3) 4.05 (2H br m NCH2) 4.33 (2H s NCH2) 6.00ndash;6.35 (1H br m CH3CH ) 7.05ndash;7.90 (10H m ArH); dC(63 MHz; CDCl3) 14.7 28.4 48.2 49.9 80.6 127.2 127.6 128.7 129.4 133.5 136.8 137.6 138.1 140.6 141.5 155.7; m/z (EI1) 401.1658 (0.3 M1.C22H27NO4S requires M 401.1661) 345 10 MH1 2 (CH3)3C 300 37 M1 2 (CH3)3COCO 204 (59) 150 (38) 144 (31) 106 (90) 91 (100) 77 (24) 57 (85). (1S*,2R*)-N-tert-Butoxycarbonyl-2-methyl-1-phenyl-3-(phenyldimethylsilyl) but-3-enylamine 3c Butyllithium (0.66 ml of a 2.5 M solution in hexane 1.7 mmol 1.2 equiv.) was added dropwise to a stirred soution of (Z)- N-tert-butoxycarbonyl-N-2-(phenyldimethylsilyl)but-2-enyl- benzylamine 1c (0.55 g 1.4 mmol) in tetrahydrofuran (11 ml) at 278 8C.After stirring for 14 h at 278 8C the reaction was quenched by the addition of methanol (0.1 ml) and warmed to room temperature. The reaction mixture was then partitioned between saturated aqueous sodium hydrogen carbonate (20 ml) and diethyl ether (15 ml) the organic layer was separated and the aqueous layer further extracted with diethyl ether (3 times; 15 ml). The combined organics were dried over magnesium sulfate and concentrated in vacuo to give a viscous pale yellow oil (0.63 g) which was purified by flash column chromatography (12 times; 2.5 cm silica 7 ethyl acetatendash;light petroleum) to give the title compound 3c as a colourless oil (0.44 g 81) (Found C 72.4; H 8.6; N 3.8. C24H33NO2Si requires C 72.9; H 8.4; N 3.5); nmax(thin film)/cm21 3425 1702 1496 1366 1250 1171 817 734 701; dH250 MHz; (CD3)2SO 0.42 3H s (CH3)Si 0.47 3H s (CH3)Si 0.53 (3H d J 7.0 CCHCH3) 1.15 9H s (CH3)3C 2.59 (1H dq J 9.6 7.0 =CCHCH3) 4.47 (1H t J 9.6 NCHPh) 5.42 (1H d J 2.4 HHC ) 5.81 (1H d J 2.4 HHC ) 6.87 (1H d J 9.6 NH by D2O exchange) 6.95ndash;7.45 (10H m ArH); dC(63 MHz; CDCl3) 22.6 19.7 28.4 42.2 59.3 79.0 127.0 127.1 127.5 128.0 128.2 129.3 134.1 137.9 142.8 152.9 154.9; m/z (EI1) 395.2274 (3.7 M1.C24H33NO2Si requires M 395.2281) 382 (2) 262 (7) 206 (49) 172 (9) 150 (100) 135 (48) 106 (79) 91 (7) 57 (94). (1S*,2R*)-N-tert-Butoxycarbonyl-2-methyl-1,3-diphenylbut-3- enylamine 3d Butyllithium (1.64 ml of a 2.5 M solution in hexane 4.1 mmol 1.2 equiv.) was added dropwise to a stirred solution of (E)- N-tert-butoxycarbonyl-N-(2-phenylbut-2-enyl)benzylamine 1d (1.15 g 3.4 mmol) in tetrahydrofuranndash;HMPA (4 1 23 ml) at 278 8C.After stirring for 1 h at 278 8C the reaction was slowly warmed to 240 8C and stirred for 14 h before being quenched by the addition of methanol (0.2 ml). The reaction mixture was then partitioned between saturated aqueous sodium hydrogen carbonate (50 ml) and diethyl ether (30 ml) the organic layer was separated and the aqueous layer further extracted with diethyl ether (3 times; 30 ml). The combined organics were dried over magnesium sulfate and concentrated in vacuo to give a viscous yellow gum (2.3 g) which was purified by flash column chromatography (12 times; 4 cm silica 10 ethyl acetatendash;light petroleum) to give a pale yellow solid (0.82 g 71 of a 7 1 mixture of the title compound 3d to the minor diastereoisomer 2d).Trituration with ice-cold light petroleum furnished the major diastereoisomer only as a white powder (0.68 g 59) mp 123ndash;124 8C (Found C 77.9; H 7.7; N 4.3. C22H27NO2 J. Chem. Soc. Perkin Trans. 1 1997 1521 requires C 78.3; H 8.1; N 4.2); nmax(thin film)/cm21 3274 1701 1495 1454 1390 1365 1248 1170 701; dH250 MHz; (CD3)2SO 0.70 (3H d J 6.7 CH3) 1.30 9H s (CH3)3C 3.02 (1H dq J 9.5 6.7 CH3CHC ) 4.53 (1H t J 9.5 NHCHPh) 5.11 (1H s CHH ) 5.21 (1H s CHH ) 7.20ndash;7.50 (11H m ArH and NH by D2O exchange); dC63 MHz; (CD3)2SO 18.7 28.7 43.8 58.3 78.0 113.2 127.2 127.7 127.9 128.4 128.7 142.6 142.9 151.9 155.2; m/z (EI1) 337.2039 (0.4 M1. C22H27NO2 requires M 337.2042) 281 3 MH1 2 (CH3)3C 236 10 M1 2 (CH3)3COCO 206 (38) 196 (24) 150 (87) 106 (83) 91 (47) 57 (100).(1S*,2R*)-N-tert-Butoxycarbonyl-2-methyl-1-phenyl-3-phenylthiobut- 3-enylamine 3e (E)-N-tert-Butoxycarbonyl-N-(2-phenylthiobut-2-enyl)benzylamine 1e (0.72 g 2.0 mmol) was treated with BuLi under exactly the same conditions and work up as for 3d to give a viscous yellow oil (1.2 g) which was purified by flash column chromatography (15 times; 3 cm silica 10 ethyl acetatendash;light petroleum) to give a pale yellow solid (0.35 g 49 of a 1 2 4 mixture of the minor diastereoisomer 2e N-tert-butoxycarbonylbenzylamine and the title compound 3e respectively). Trituration with ice-cold light petroleum furnished the title compound only as a white powder (0.19 g 26) mp 121ndash; 122 8C; nmax(thin film)/cm21 3375 1679 1512 1368 1292 1250 1171 742 704; dH250 MHz; (CD3)2SO 0.76 (3H d J 7.0 CH3) 1.35 9H s (CH3)3C 2.76 (1H dq J 9.8 7.0 CH3CHC ) 4.60 (1H s CHH ) 4.70 (1H t J 9.5 NHCHPh) 5.30 (1H s CHH ) 7.20ndash;7.55 (11H m ArH and NH by D2O exchange); dC63 MHz; (CD3)2SO 17.7 28.8 46.9 58.2 78.1 113.2 127.4 127.9 128.6 128.7 129.9 133.0 134.1 142.7 149.4 155.1; m/z (EI1) 369.1767 (5 M1.C22H27NO2S requires M 369.1762) 296 5 M1 2 (CH3)3CO 268 3 M1 2 (CH3)3COCO 260 (2 M1 2 Ph) 206 (63) 150 (100) 106 (87) 57 (96). Attempted aza-2,3 Wittig sigmatropic rearrangement of (E)-Ntert- butoxycarbonyl-N-(2-phenylsulfinylbut-2-enyl)benzylamine 1f (E)-N-tert-Butoxycarbonyl-N-(2-phenylsulfinylbut-2-enyl)- benzylamine 1f (63 mg 0.16 mmol) was treated with butyllithium under exactly the same conditions and work up as for 3d to give a viscous yellow oil (70 mg) which was purified by flash column chromatography (15 times; 1 cm silica 20 ethyl acetatendash;light petroleum) to furnish (E)-N-tert-butoxycarbonyl- N-but-2-enylbenzylamine 1a 6 (13 mg 30) and N-tert-butoxycarbonylbenzylamine (16 mg 48).(1S*,2R*)-N-tert-Butoxycarbonyl-2-methyl-1-phenylbut-3-enylamine 3a Tetrabutylammonium fluoride (1.1 ml of a 1 M solution in tetrahydrofuran 1.1 mmol 5 equiv.) was added to a stirred solution of (1S*,2R*)-N-tert-butoxycarbonyl-2-methyl-1-phenyl-3- (phenyldimethylsilyl)but-3-enylamine 3c (85 mg 0.2 mmol) in dimethyl sulfoxide. After stirring for 2 h at 100 8C (oil bath temperature) the reaction mixture was cooled diluted with ethyl acetate (10 ml) washed sequentially with water (4 times; 10 ml) and brine (10 ml) dried thoroughly over magnesium sulfate and concentrated in vacuo to give an off-white solid (34 mg).Purification by flash column chromatography (15 times; 1 cm silica 10 ethyl acetatendash;light petroleum) furnished the title compound 3a as a white solid (26 mg 47).6 Acknowledgements We dedicate this paper to the memory of Mr S. A. Johnson an able chemist who was called away from his life on this earth. This work was supported by Zeneca Agrochemicals and the University of Sheffield. We would also like to thank The Royal Society and Zeneca (Strategic Research Fund award) for additional financial support. References 1 For a recent review see T. Nakai and K. Mikami Org. React. 1994 46 105. 2 (a) M. A. Reetz and D. Schinzer Tetrahedron Lett. 1975 3485; (b) C. A. Broka and T. Shen J. Am. Chem. Soc. 1989 111 2981; (c) Y. Murata and T.Nakai Chem. Lett. 1990 2069; (d) I. Coldham J. Chem. Soc. Perkin Trans. 1 1993 1275; (e) R. E. Gawley Q. Zhang and S. Campagna J. Am. Chem. Soc. 1995 117 11 817; ( f ) M. Gulea-Purcarescu E. About-Jaudet N. Collignon M. Saquet and S. Masson Tetrahedron 1996 52 2075. 3 T. Durst R. V. D. Elzen and M. J. Le Belle J. Am. Chem. Soc. 1972 94 9261. 4 (a) J. Ahman and P. Somfai J. Am. Chem. Soc. 1994 116 9781; (b) I. Coldham A. J. Collis R. J. Mould and R. E. Rathmell J. Chem. Soc. Perkin Trans. 1 1995 2739. 5 J. C. Anderson D. C. Siddons S. C. Smith and M. E. Swarbrick J. Chem. Soc. Chem. Commun. 1995 1835. 6 J. C. Anderson D. C. Siddons S. C. Smith and M. E. Swarbrick J. Org. Chem. 1996 61 4820. 7 P. v. R. Schleyer T. Clark A. J. Kos G. W. Spitznagel C. Rohde D. Arad K. N. Houk and N.G. Rondan J. Am. Chem. Soc. 1984 106 6467. 8 Here we draw an analogy to the calculated transition state for the oxy-2,3 Wittig rearrangement. Y.-D. Wu K. N. Houk and J. A. Marshall J. Org. Chem. 1990 55 1421. See also K. Mikami T. Uchida T. Hirano Y.-D. Wu and K. N. Houk Tetrahedron 1994 50 5917. 9 J. C. Anderson M. E. Swarbrick and C. A. Roberts unpublished results. 10 I. Fleming J. Dunoduegrave;s and R. Smithers Org. React. 1989 37 57. 11 H. Oda M. Sato Y. Morizawa K. Oshima and H. Nozaki Tetrahedron 1985 41 3257. 12 A. G. Brook J. M. Duff and D. G. Anderson Can. J. Chem. 1970 48 561. 13 L. E. Overman J. Am. Chem. Soc. 1976 98 2901. 14 K. Burgess and L. D. Jennings J. Am. Chem. Soc. 1991 113 6129. 15 K. Takaki M. Okada M. Yamada and K. Negoro J. Org. Chem. 1982 47 1200. Paper 6/08226B Received 5th December 1996 Accepted 21st January 1997 J.Chem. Soc. Perkin Trans. 1 1997 1517 Diastereoselective acyclic aza-2,3 Wittig sigmatropic rearrangements James C. Anderson,*,dagger;,a Stephen C. Smith b and Martin E. Swarbrick a a Department of Chemistry University of Sheffield Sheffield UK S3 7HF b Zeneca Agrochemicals Jealottrsquo;s Hill Research Station Bracknell Berkshire UK RG42 6EY The scope of anion-stabilising groups in promoting and controlling the diastereoselection of the aza-2,3 Wittig sigmatropic rearrangement has been assessed by the syntheses of allylic amines 1cndash;g that have incorporated SiPhMe2 Ph SPh SOPh and SO2Ph respectively at the C-2 position. The subsequent anionic 2,3-sigmatropic rearrangements are analysed with respect to the extent of diastereoselection of the product homoallylic amines 2 and 3.It appears that silicon not only is the most efficient at electronically facilitating this rearrangement but its steric bulk controls the diastereoselectivity of the process exclusively. Phenyl and phenylthio substituents also have a similar but decreased effect on diastereoselection that mirrors their lower steric bulk in comparison to the silicon derivative. Sulfoxide and sulfone substituents are incompatible with the reaction conditions required for rearrangement. Introduction Despite the numerous synthetic applications of the 2,3 Wittig sigmatropic rearrangement of allylic ethers (Scheme 1 X = O),1 the use of the aza congener (Scheme 1 X = N) has been limited by the reluctance of simple allyl amines to undergo this transformation.2 The first unequivocal example of this rearrangement 3 which is driven by relief of ring strain has been extended by others to include vinyl aziridines.4 The 2,3- rearrangement of N-allyl nitrogen ylides has been shown to be potentially useful.2e We have concentrated our efforts on the acyclic variant of this rearrangement and want to develop the aza-2,3 Wittig sigmatropic process into a versatile method for the preparation of unnatural amino acids. To this end we have managed to markedly accelerate our preliminary reaction 5 and control the diastereoselectivity of the acyclic rearrangement by the incorporation of a trimethylsilyl group at the C-2 position of our substrate (Scheme 2).6 We believe the silicon atom due to its ability to stabilise adjacent negative charge,7 is stabilising the transition state,8 thus reducing the activation energy of the reaction.The inherent bulk of the silyl group is dictating the diastereoselection.6 This strategy has allowed the acyclic Scheme 1 X R1 R2 HX R1 R2 X = O NR3 anionic 2,3 shift Scheme 2 Reagents and conditions BuLi Et2Ondash;HMPA (4 1); a X = H 278 to 240 8C 14 h 82; b X = SiMe3 278 8C 10 min 88 N Me Ph Boc X HN Me Ph Boc HN Me Ph Boc X X a X = H ds ratio of 2:3 = 3:2 b X = SiMe3 ds ratio of 2:3 = 1:20 3 1a X = H 1b X = SiMe3 + 2 2 dagger;E-mail j.anderson@sheffield.ac.uk aza-2,3 Wittig rearrangement to become more applicable to a wider range of substrates.9 We report here the first examples of other anion-stabilising groups successfully incorporated into rearrangement precursors 1 that both facilitate and increase the synthetic scope of the aza-2,3 Wittig rearrangement.Our first concern was that we could not remove the trimethylsilyl group from 3 presumably because the accepted mechanism would require the formation of an incipient primary carbocation. 10 Although there is a rich chemistry associated with vinyl silanes 10 that could be applied to compounds such as 3 our methodology would be more versatile if the silyl group could also be removed at an early stage. An added incentive was that we could obtain unambiguous proof of diastereoselection from the desilylated product 3 (X = H).5 Following an isolated report that the phenyldimethylsilyl group could be removed from the C-2 position of a vinyl silane with tetrabutyl ammonium fluoride (TBAF),11 we sought to obtain 1c (X = SiPhMe2).We were also interested in the rearrangements of compounds analogous to 1 where X = Ph SPh S(O)Ph and SO2Ph (1dndash;g respectively); as all these groups are capable of stabilising an adjacent negative charge and could control diastereoselectivities in a manner similar to that found with SiMe3 (vide supra). Results and discussion Allylic alcohols 4cndash;e were prepared from the addition of the corresponding a-lithio-a-substituted vinyl precursors to acetaldehyde. In the case of the phenyldimethylsilane derivative 4c we had to develop a reliable synthesis of (1-bromovinyl)- phenyldimethylsilane based upon a description in the literature of the triphenyl congener.12 Addition of bromine to phenyldimethylvinylsilane and then elimination of hydrogen bromide with refluxing pyridine produced the desired halide in 62 yield.Allylic alcohols 4cndash;e were then transformed into the desired rearrangement precursors 1cndash;e via the established procedure for stereoselective conversion of secondary allylic alcohols to allyl amides 5cndash;e (Scheme 3).13 Compounds 1f and 1g were obtained from the controlled oxidation of 1e. Rearrangement of 1c was carried out by treatment with BuLi at 278 8C in tetrahydrofuran (THF) for 14 h to give the rearranged product 3c in 81 yield with complete diastereoselectivity (Scheme 4). This diastereoisomer exhibited characteristic chemical shifts in its NMR spectrum that we had used to assign the trimethylsilyl analogue (Table 1).6 Treatment with 1518 J. Chem. Soc. Perkin Trans. 1 1997 TBAF in DMSO under standard literature conditions 11 produced a single diastereoisomer of the desilylated product in 47 yield.This compound had an identical NMR spectrum to the minor diastereoisomer 3a (Scheme 3) obtained from our first rearrangement the structure of which had been proven by correlation to authentic isoleucine.5 Treatment of 1d with BuLi in THFndash;HMPA (4 1) at 278 8C and then at 240 8C for 14 h led to a mixture of 2d and 3d in 71 yield with a diastereoisomeric ratio of 1 7 (Scheme 5). Similarly treatment of 1e under identical conditions led to an inseparable mixture by chromatography of 2e N-tert-butoxycarbonylbenzylamine and 3e in 49 yield with a ratio of 1 2 4 (Scheme 5). Samples of pure diastereoisomers 3d and 3e could be obtained by trituration of the chromatographed mixed prod- Scheme 3 Reagents and conditions i ButLi Et2O 278 8C MeCHO; ii BuLi TMEDA THF 278 8C MeCHO; iii KH cat.Cl3CCN; iv xylenes 140 8C; v (Boc)2O then NaOH; vi KH BnBr; vii mCPBA; viii Oxone Br SiPhMe2 Br Ph SPh OH Me X NH Me Boc X N Me Ph Boc X 4c X = SiPhMe2 86 4d X = Ph 89 4e X = SPh 69 5c 40 5d 61 5e 41 1c 95 1d 94 1e 82 1f X = S(O)Ph 90 1g X = SO2Ph 95 i iii iv v vii i ii viii Scheme 4 Reagents and conditions i BuLi THF 278 8C 14 h; ii TBAF DMSO 100 8C 2 h N Me Ph Boc SiPhMe2 HN Me Ph Boc Me2PhSi HN Me Ph Boc 3c 1c 3a i ii Scheme 5 Reagents and conditions i BuLi THFndash;HMPA (4 1) 278 8C 1 h then 240 8C 14 h HN Me Ph Boc HN Me Ph Boc X X N Me Ph Boc X 1d X = Ph 1e X = SPh 2d,e 3d,e + i Table 1 Selected NMR data for 2 and 3 1b 1c 1d 1e X SiMe3 SiPhMe2 Ph SPh Diastereoselectivity a 2 3 1 20 3 only 1 7 1 4 d Me groups 2; 3 b 1.02; 0.66 0.53 0.80; 0.70 1.13; 0.76 J C-1Hndash;C-2H 3 10.4 9.6 9.5 9.8 a Ratios of unpurified products determined by 250 MHz NMR.b 2H6DMSO. ucts with cold light petroleum in 59 and 26 yield respectively. The diastereoselection could be ascertained from inspection of selected NMR characteristics (Table 1). As with the trimethylsilyl derivative the large C-1Hndash;C-2H coupling constant (Fig. 1) suggested conformations where the methyl substituents of the major diastereoisomer were shielded by the proximal phenyl ring.6 This analysis was supported by the conversion of 3c to 3a (vide supra). These results support the proposed transition state model6 (Scheme 6) for these rearrangements. The change in the extent of diastereoselection nicely mirrors the decrease in the steric bulk of the anion-stabilising vinyl substituents X in the order PhMe2Si Ph SPh.We expected the sulfoxide 1f and sulfone 1g analogues to behave similarly; 1f offering the potential of a chiral anionstabilising vinyl substituent that could control the enantioselection of this particular variant of the process. Unfortunately treatment of 1f with BuLi under standard conditions led only to the desulfurised starting material 1a (30) and N-tert-butoxycarbonylbenzylamine (48) (Scheme 7). Treatment of 1g and 1f under a range of similar conditions led to complex mixtures of products none of which could be identified. We can only conclude that the sulfoxide and sulfone substituents render the system incompatible towards the strong base necessary to facilitate the anionic sigmatropic rearrangement.Fig. 1 HN Ph Me Boc HN Ph Me Boc H HNBoc Ph H Me H Ph BocNH H Me X X X X 3 1 1 2 2 Scheme 6 Transition-state model for major diastereoisomer Me H N Ph Boc X Me H N Ph Boc X N Me Ph Boc X HN Me Ph Boc X d- d- 1 3 Scheme 7 Reagents and conditions i BuLi THFndash;HMPA (4 1) 278 8C 1 h then 240 8C 14 h N Me Ph Boc (O)SPh N Me Ph Boc Boc Ph HN + 1a 30 48 i 1f J. Chem. Soc. Perkin Trans. 1 1997 1519 The aza-2,3 Wittig rearrangement has been shown to be accelerated by the incorporation of certain anion-stabilising vinyl substituents at the central vinyl carbon atom. The diastereoselection ranges from 4 1 to 20 1 depending on the steric bulk of the substituents X in allyl amines 1 with silyl substituents emerging as the front runners. The phenyldimethylsilyl group after its removal has verified our structural assignments and increases the synthetic utility of the silicon-stabilised aza- 2,3 Wittig rearrangement.The phenyl and phenylthio substituents further expand the process. The use of the rearranged precursors as synthetic building blocks will be reported shortly and the investigation of other less obvious accelerating groups are underway. Experimental General details Our general experimental details have been reported elsewhere.6 (1-Bromovinyl)phenyldimethylsilane Bromine (1.84 ml 0.036 mol 1 equiv.) in carbon tetrachloride (20 ml 1 2 times; 5 ml wash) was added dropwise via a cannula to a stirred solution of phenyldimethylvinylsilane (5.78 g 0.036 mol) in carbon tetrachloride (30 ml) at 0 8C. The solution was stirred for 10 min at 0 8C washed sequentially with saturated aqueous sodium hydrogen carbonate containing some sodium hydrogen sulfite (3 times; 50 ml) and brine (50 ml) dried over magnesium sulfate and concentrated in vacuo to give the crude dibromide (12.62 g) as a pale yellow oil.This crude product was dissolved in pyridine (50 ml) and refluxed for 14 h. After cooling to room temperature the dark brown reaction mixture was diluted with diethyl ether (100 ml) and washed with water (70 ml). The aqueous layer was further extracted with diethyl ether (2 times; 70 ml) and the combined organics washed repeatedly with a saturated copper sulfate solution until all of the pyridine had been removed as indicated by the aqueous phase retaining a light blue colour. The organics were then washed with brine (70 ml) dried over magnesium sulfate and concentrated in vacuo to give a pale brown oil (5.63 g) which was purified by flash column chromatography (15 times; 5 cm silica light petroleum) to give the bromovinylsilane (5.32 g 62) as a colourless oil (Found C 50.2; H 5.8; Br 33.4.C10H13BrSi requires C 49.8; H 5.4; Br 33.1); nmax(thin film)/cm21 3071 2962 1592 1429 1397 1250 1114 1070 915; dH(250 MHz; CDCl3) 0.49 6H s (CH3)2Si 6.17 (1H d J 1.7 CHH ) 6.35 (1H d J 1.7 CHH ) 7.30ndash;7.70 (5H m ArH); dC(63 MHz; CDCl3) 23.4 128.0 129.8 131.5 134.1 135.2 136.7; m/z (EI1) 241.9940 (31 M1. C10H13 81BrSi requires M 241.9949) 239.9962 (32 M1. C10H13 79BrSi requires M 239.9970) 227 (51)/225 (50 M1 2 CH3) 201 (100)/199 (100) 161 (23 M1 2 Br) 145 (37) 135 (97) 105 (46). 3-Phenyldimethylsilylbut-3-en-2-ol 4c tert-Butyllithium (15.5 ml of a 1.7 M solution in pentane 26.4 mmol 2.1 equiv.) was added dropwise to a stirred solution of (1-bromovinyl)phenyldimethylsilane (3.03 g 12.6 mmol) in diethyl ether (40 ml) at 278 8C.After complete addition the reaction was stirred for 1 h at 278 8C. A solution of acetaldehyde (1.40 ml 25.1 mmol 2 equiv.) in diethyl ether (10 ml) was then added dropwise via a cannula. After stirring for a further hour at 278 8C the reaction was allowed to warm to room temperature. Water (50 ml) was added the mixture separated and the aqueous layer extracted with diethyl ether (3 times; 30 ml). The combined organics were dried over magnesium sulfate and concentrated in vacuo to give a yellow oil (3.24 g) which was purified by flash column chromatography (15 times; 5 cm silica 15 ethyl acetatendash;light petroleum) to give 4c (2.23 g 86) as a colourless oil (Found C 69.4; H 8.8.C12H18OSi requires C 69.8; H 8.8); nmax(thin film)/cm21 3358 1428 1250 1111 845; dH(250 MHz; CDCl3) 0.42 (3H s CH3Si) 0.44 (3H s CH3Si) 1.20 (3H d J 6.4 CH3CH) 1.39 (1H d J 4.3 OH by D2O exchange) 4.44 (1H qdt J 6.4 4.3 1.2 CH3CH) 5.45 (1H dd J 2.4 1.2 CHH ) 5.91 (1H dd J 2.4 1.2 CHH ) 7.30ndash;7.65 (5H m ArH); dC(63 MHz; CDCl3) 22.3 22.1 24.1 71.7 124.7 127.9 129.1 133.9 138.4 155.0; m/z (EI1) 191.0893 (25 M1 2 CH3. C11H15OSi requires M 2 CH3 191.0892) 137 (100) 135 (44) 105 (12) 75 (26). 3-Phenylbut-3-en-2-ol 4d a-Bromostyrene (3 ml 23.1 mmol) was converted to 4d in an identical fashion to that for 4c and was purified by flash column chromatography (15 times; 5 cm silica 15 ethyl acetatendash;light petroleum) to give a pale straw coloured oil (3.06 g 89);14 dH(250 MHz; CDCl3) 1.32 (3H d J 6.4 CH3) 1.79 (1H d J 4.0 OH by D2O exchange) 4.82 (1H qd J 6.4 4.0 CHOH) 5.28 (1H t J 0.9 CHH ) 5.36 (1H t J 1.2 CHH ) 7.25ndash;7.45 (5H m ArH).3-Phenylthiobut-3-en-2-ol 4e Phenyl vinyl sulfide (5 ml 0.038 mol) in tetrahydrofuran (40 ml 1 2 times; 10 ml wash) was added dropwise via a cannula to a stirred solution of butyllithium (16.1 ml of a 2.5 M solution in hexane 0.040 mol 1.05 equiv.) and TMEDA (6.1 ml 0.040 mol 1.05 equiv.) in tetrahydrofuran (120 ml) at 278 8C. After stirring at 278 8C for 2 h a solution of acetaldehyde (4.2 ml 0.077 mol 2 equiv.) in tetrahydrofuran (10 ml 1 2 times; 2 ml wash) was added dropwise via a cannula. Upon complete addition the reaction was stirred for a further hour at 278 8C before being warmed to room temperature.Saturated aqueous ammonium chloride (100 ml) was added the mixture separated and the aqueous layer further extracted with diethyl ether (3 times; 70 ml). The combined organics were dried over magnesium sulfate and concentrated in vacuo to give a crude yellow oil (9.1 g) which was purified by flash column chromatography (15 times; 7 cm silica 20 ethyl acetatendash;light petroleum) to give the alcohol 4e (4.75 g 69) as a yellow oil;15 dH(250 MHz; CDCl3) 1.43 (3H d J 6.4 CH3) 1.93 (1H br s OH by D2O exchange) 4.37 (1H qt J 6.4 0.6 CHOH) 4.97 (1H d J 0.9 CHH ) 5.50 (1H d J 0.9 CHH ) 7.20ndash;7.50 (5H m ArH). Preparation of compounds 1 We have previously reported general methods for the preparation of 1 from 4 via 5.6 (Z)-N-tert-Butoxycarbonyl-2-(phenyldimethylsilyl)but-2-enylamine 5c.Compound 5c was prepared in 40 yield from 4c as a colourless oil; nmax(thin film)/cm21 3356 1703 1505 1366 1249 1171; dH(250 MHz; CDCl3) 0.41 6H s (CH3)2Si 1.42 9H s (CH3)3C 1.64 (3H dt J 7.0 1.2 CH3CH ) 3.77 (2H m NCH2CH ) 4.35 (1H br s NH by D2O exchange) 6.31 (1H qt J 7.0 1.2 CH3CH ) 7.30ndash;7.55 (5H m ArH); dC(63 MHz; CDCl3) 21.5 17.8 47.9 79.1 127.9 128.9 133.7 134.8 140.5 155.4; m/z (CI1) 306.1880 (13 MH1. C17H28NO2Si requires MH1 306.1889) 278 (17) 248 (13 M1 2 But) 234 (47) 172 (100) 135 (16) 57 (But). (E)-N-tert-Butoxycarbonyl-2-phenylbut-2-enylamine 5d. Compound 5d was prepared in 61 yield from 4d as a colourless oil; nmax(thin film)/cm21 3351 1704 1505 1366 1249 1172 702; dH(250 MHz; CDCl3) 1.40 9H s (CH3)3C 1.59 (3H dt J 7.0 1.2 CH3) 3.97 (2H m NCH2CH ) 4.55 (1H br s NH by D2O exchange) 5.71 (1H q J 7.0 CH ) 7.15ndash;7.40 (5H m ArH); dC(63 MHz; CDCl3) 14.5 28.4 47.4 79.1 123.0 127.0 128.2 128.7 138.3 139.6 155.8; m/z (EI1) 247.1575 (3.8 M1.C15H21NO2 requires M 247.1572) 191 100 MH1 2 (CH3)3C 176 (9) 146 (6) 130 (37) 115 (8). (E)-N-tert-Butoxycarbonyl-2-phenylthiobut-2-enylamine 5e. Compound 5e was prepared in 41 yield from 4e as a yellow solid mp 52ndash;54 8C (Found C 64.4; H 7.5; N 4.9; S 11.6. C15H21NO2S requires C 64.5; H 7.6; N 5.0; S 11.5); nmax(thin film)/cm21 3348 1702 1584 1507 1478 1366 1249 1170; dH(250 MHz; CDCl3) 1.41 9H s (CH3)3C 1.90 (3H dt J 6.7, 1520 J. Chem. Soc. Perkin Trans. 1 1997 1.2 CH3) 3.77 (2H d J 5.5 NCH2) 4.77 (1H br s NH by D2O exchange) 6.25 (1H q J 6.7 CH3CH ) 7.15ndash;7.30 (5H m ArH); dC(63 MHz; CDCl3) 15.5 28.4 46.4 79.3 126.1 128.9 129.0 130.8 133.6 134.6 155.6; m/z (EI1) 279.1291 (32 M1.C15H21NO2S requires M 279.1293) 223 MH1 2 (CH3)3C 74 162 (96) 149 (37) 129 (22) 114 (92) 57 (100). (Z)-N-tert-Butoxycarbonyl-N-2-(phenyldimethylsilyl)but-2- enylbenzylamine 1c. Compound 1c was prepared in 95 yield from 5c as a colourless oil; nmax(thin film)/cm21 1694 1454 1410 1365 1248 1168 1111; dH(250 MHz; CDCl3) 0.38 6H s (CH3)2Si 1.45 9H s (CH3)3C 1.67 (3H dt J 7.0 1.5 CH3CH ) 3.93 (2H br m NCH2) 4.31 (2H br m NCH2) 6.12 (1H q J 7.0 CH3CH ) 7.10ndash;7.55 (10H m ArH); dC(63 MHz; CDCl3) 21.5 17.7 28.4 48.7 51.9 79.6 126.7 127.1 127.6 127.8 128.4 128.8 133.6 138.4 139.0 155.9; m/z (EI1) 395.2279 (9 M1. C24H33NO2Si requires M 395.2281) 338 17 M1 2 (CH3)3C 324 (60) 262 (100) 135 (51) 91 (65).(E)-N-tert-Butoxycarbonyl-N-(2-phenylbut-2-enyl)benzylamine 1d. Compound 1d was prepared in 94 yield from 5d as a pale yellow oil (Found C 78.1; H 8.0; N 3.95. C22H27NO2 requires C 78.3; H 8.1; N 4.15); nmax(thin film)/cm21 1694 1454 1416 1365 1243 1167 1124 879 700; dH(250 MHz; CDCl3) 1.30 9H s (CH3)3C 1.55 (3H m CH3) 3.87ndash;4.40 (4H m CH2NCH2) 5.50 (1H m CH ) 7.00ndash;7.30 (10H m ArH); dC(63 MHz; CDCl3) 14.4 28.3 48.3 52.6 79.5 123.5 124.0 126.9 127.1 127.4 128.1 128.4 128.8 137.3 138.3 155.7; m/z (EI1) 337.2037 (7 M1. C22H27NO2 requires M 337.2042) 281 74 MH1 2 (CH3)3C 132 (27) 91 (100) 57 (46). (E)-N-tert-Butoxycarbonyl-N-(2-phenylthiobut-2-enyl)benzylamine 1e. Compound 1e was prepared in 82 yield from 5e as a yellow oil; nmax(thin film)/cm21 1695 1584 1477 1453 1410 1365 1244 1167 1117 878; dH(250 MHz; CDCl3) 1.40 9H s (CH3)3C 1.94 (3H dt J 6.7 1.5 CH3) 3.87 (2H m NCH2) 4.38 (2H m NCH2) 6.03ndash;6.17 (1H m CH3CH ) 7.05ndash;7.35 (10H m ArH); dC(63 MHz; CDCl3) 15.4 28.3 49.1 51.1 79.8 125.8 127.1 127.3 127.9 128.3 128.9 133.4 135.2 138.0 155.9; m/z (EI1) 369.1770 (0.8 M1.C22H27NO2S requires M 369.1763) 313 1.2 MH1 2 (CH3)3C 296 (4) 204 (100) 91 (58) 57 (25). (E)-N-tert-Butoxycarbonyl-N-(2-phenylsulfinylbut-2-enyl)- benzylamine 1f m-Chloroperbenzoic acid (0.56 g 1 equiv.) was added portionwise to a stirred solution of (E)-N-tert-butoxycarbonyl-N- (2-phenylthiobut-2-enyl)benzylamine 1e (1.20 g) in dichloromethane (30 ml) at room temperature. After 1 h further dichloromethane (20 ml) was added and the reaction mixture washed with saturated aqueous sodium hydrogen carbonate (3 times; 50 ml) dried over magnesium sulfate and concentrated in vacuo to give a yellow oil (1.60 g).This was purified by flash column chromatography (15 times; 3 cm silica 30 ethyl acetatendash; light petroleum) to give the sulfoxide 1f (1.13 g 90) as a viscous pale yellow oil; nmax(thin film)/cm21 1694 1454 1415 1366 1247 1166 1044 749 697; dH(250 MHz; CDCl3) 1.37 9H m (CH3)3C 2.18 (3H dt J 7.3 1.6 CH3) 3.60ndash;4.30 (4H m CH2NCH2) 5.90ndash;6.30 (1H m CH3CH ) 7.00ndash;7.55 (10H m ArH); dC(63 MHz; CDCl3) 14.9 28.3 42.2 50.1 80.1 123.9 127.2 127.7 128.4 129.1 131.7 134.6 138.1 140.6 142.6 155.8; m/z (EI1) 385.1709 (19 M1. C22H27NO3S requires M 385.1712) 329 16 MH1 2 (CH3)3C 312 25 M1 2 (CH3)3CO 284 15 M1 2 (CH3)3COCO 268 (47 M1 2 PhSO) 204 (100) 158 (35) 144 (40).(E)-N-tert-Butoxycarbonyl-N-(2-phenylsulfonylbut-2-enyl)- benzylamine 1g A suspension of Oxone (5.79 g 3 equiv.) and water (15 ml) was added portionwise to a stirred solution of 1e (1.16 g) in methanol (25 ml) at 0 8C. Upon complete addition the reaction was warmed to room temperature and stirred for 14 h. The methanol was removed in vacuo the residue partitioned between water (15 ml) and dichloromethane (15 ml) the organic layer was separated and the aqueous layer further extracted with dichloromethane (3 times; 15 ml). The combined organics were dried over magnesium sulfate and concentrated in vacuo to give a crude yellow oil which was purified by flash column chromatography (15 times; 3 cm silica 20 ethyl acetatendash; light petroleum) to give the sulfoxide 1g (1.20 g 95) as a viscous pale yellowndash;green oil; nmax(thin film)/cm21 1694 1447 1410 1366 1305 1247 1159 1137 1083 729 690; dH(250 MHz; CDCl3) 1.40 9H m (CH3)3C 2.15 (3H dt J 7.6 1.5 CH3) 4.05 (2H br m NCH2) 4.33 (2H s NCH2) 6.00ndash;6.35 (1H br m CH3CH ) 7.05ndash;7.90 (10H m ArH); dC(63 MHz; CDCl3) 14.7 28.4 48.2 49.9 80.6 127.2 127.6 128.7 129.4 133.5 136.8 137.6 138.1 140.6 141.5 155.7; m/z (EI1) 401.1658 (0.3 M1.C22H27NO4S requires M 401.1661) 345 10 MH1 2 (CH3)3C 300 37 M1 2 (CH3)3COCO 204 (59) 150 (38) 144 (31) 106 (90) 91 (100) 77 (24) 57 (85). (1S*,2R*)-N-tert-Butoxycarbonyl-2-methyl-1-phenyl-3-(phenyldimethylsilyl) but-3-enylamine 3c Butyllithium (0.66 ml of a 2.5 M solution in hexane 1.7 mmol 1.2 equiv.) was added dropwise to a stirred soution of (Z)- N-tert-butoxycarbonyl-N-2-(phenyldimethylsilyl)but-2-enyl- benzylamine 1c (0.55 g 1.4 mmol) in tetrahydrofuran (11 ml) at 278 8C.After stirring for 14 h at 278 8C the reaction was quenched by the addition of methanol (0.1 ml) and warmed to room temperature. The reaction mixture was then partitioned between saturated aqueous sodium hydrogen carbonate (20 ml) and diethyl ether (15 ml) the organic layer was separated and the aqueous layer further extracted with diethyl ether (3 times; 15 ml). The combined organics were dried over magnesium sulfate and concentrated in vacuo to give a viscous pale yellow oil (0.63 g) which was purified by flash column chromatography (12 times; 2.5 cm silica 7 ethyl acetatendash;light petroleum) to give the title compound 3c as a colourless oil (0.44 g 81) (Found C 72.4; H 8.6; N 3.8.C24H33NO2Si requires C 72.9; H 8.4; N 3.5); nmax(thin film)/cm21 3425 1702 1496 1366 1250 1171 817 734 701; dH250 MHz; (CD3)2SO 0.42 3H s (CH3)Si 0.47 3H s (CH3)Si 0.53 (3H d J 7.0 CCHCH3) 1.15 9H s (CH3)3C 2.59 (1H dq J 9.6 7.0 =CCHCH3) 4.47 (1H t J 9.6 NCHPh) 5.42 (1H d J 2.4 HHC ) 5.81 (1H d J 2.4 HHC ) 6.87 (1H d J 9.6 NH by D2O exchange) 6.95ndash;7.45 (10H m ArH); dC(63 MHz; CDCl3) 22.6 19.7 28.4 42.2 59.3 79.0 127.0 127.1 127.5 128.0 128.2 129.3 134.1 137.9 142.8 152.9 154.9; m/z (EI1) 395.2274 (3.7 M1. C24H33NO2Si requires M 395.2281) 382 (2) 262 (7) 206 (49) 172 (9) 150 (100) 135 (48) 106 (79) 91 (7) 57 (94). (1S*,2R*)-N-tert-Butoxycarbonyl-2-methyl-1,3-diphenylbut-3- enylamine 3d Butyllithium (1.64 ml of a 2.5 M solution in hexane 4.1 mmol 1.2 equiv.) was added dropwise to a stirred solution of (E)- N-tert-butoxycarbonyl-N-(2-phenylbut-2-enyl)benzylamine 1d (1.15 g 3.4 mmol) in tetrahydrofuranndash;HMPA (4 1 23 ml) at 278 8C.After stirring for 1 h at 278 8C the reaction was slowly warmed to 240 8C and stirred for 14 h before being quenched by the addition of methanol (0.2 ml). The reaction mixture was then partitioned between saturated aqueous sodium hydrogen carbonate (50 ml) and diethyl ether (30 ml) the organic layer was separated and the aqueous layer further extracted with diethyl ether (3 times; 30 ml). The combined organics were dried over magnesium sulfate and concentrated in vacuo to give a viscous yellow gum (2.3 g) which was purified by flash column chromatography (12 times; 4 cm silica 10 ethyl acetatendash;light petroleum) to give a pale yellow solid (0.82 g 71 of a 7 1 mixture of the title compound 3d to the minor diastereoisomer 2d).Trituration with ice-cold light petroleum furnished the major diastereoisomer only as a white powder (0.68 g 59) mp 123ndash;124 8C (Found C 77.9; H 7.7; N 4.3. C22H27NO2 J. Chem. Soc. Perkin Trans. 1 1997 1521 requires C 78.3; H 8.1; N 4.2); nmax(thin film)/cm21 3274 1701 1495 1454 1390 1365 1248 1170 701; dH250 MHz; (CD3)2SO 0.70 (3H d J 6.7 CH3) 1.30 9H s (CH3)3C 3.02 (1H dq J 9.5 6.7 CH3CHC ) 4.53 (1H t J 9.5 NHCHPh) 5.11 (1H s CHH ) 5.21 (1H s CHH ) 7.20ndash;7.50 (11H m ArH and NH by D2O exchange); dC63 MHz; (CD3)2SO 18.7 28.7 43.8 58.3 78.0 113.2 127.2 127.7 127.9 128.4 128.7 142.6 142.9 151.9 155.2; m/z (EI1) 337.2039 (0.4 M1. C22H27NO2 requires M 337.2042) 281 3 MH1 2 (CH3)3C 236 10 M1 2 (CH3)3COCO 206 (38) 196 (24) 150 (87) 106 (83) 91 (47) 57 (100).(1S*,2R*)-N-tert-Butoxycarbonyl-2-methyl-1-phenyl-3-phenylthiobut- 3-enylamine 3e (E)-N-tert-Butoxycarbonyl-N-(2-phenylthiobut-2-enyl)benzylamine 1e (0.72 g 2.0 mmol) was treated with BuLi under exactly the same conditions and work up as for 3d to give a viscous yellow oil (1.2 g) which was purified by flash column chromatography (15 times; 3 cm silica 10 ethyl acetatendash;light petroleum) to give a pale yellow solid (0.35 g 49 of a 1 2 4 mixture of the minor diastereoisomer 2e N-tert-butoxycarbonylbenzylamine and the title compound 3e respectively). Trituration with ice-cold light petroleum furnished the title compound only as a white powder (0.19 g 26) mp 121ndash; 122 8C; nmax(thin film)/cm21 3375 1679 1512 1368 1292 1250 1171 742 704; dH250 MHz; (CD3)2SO 0.76 (3H d J 7.0 CH3) 1.35 9H s (CH3)3C 2.76 (1H dq J 9.8 7.0 CH3CHC ) 4.60 (1H s CHH ) 4.70 (1H t J 9.5 NHCHPh) 5.30 (1H s CHH ) 7.20ndash;7.55 (11H m ArH and NH by D2O exchange); dC63 MHz; (CD3)2SO 17.7 28.8 46.9 58.2 78.1 113.2 127.4 127.9 128.6 128.7 129.9 133.0 134.1 142.7 149.4 155.1; m/z (EI1) 369.1767 (5 M1.C22H27NO2S requires M 369.1762) 296 5 M1 2 (CH3)3CO 268 3 M1 2 (CH3)3COCO 260 (2 M1 2 Ph) 206 (63) 150 (100) 106 (87) 57 (96). Attempted aza-2,3 Wittig sigmatropic rearrangement of (E)-Ntert- butoxycarbonyl-N-(2-phenylsulfinylbut-2-enyl)benzylamine 1f (E)-N-tert-Butoxycarbonyl-N-(2-phenylsulfinylbut-2-enyl)- benzylamine 1f (63 mg 0.16 mmol) was treated with butyllithium under exactly the same conditions and work up as for 3d to give a viscous yellow oil (70 mg) which was purified by flash column chromatography (15 times; 1 cm silica 20 ethyl acetatendash;light petroleum) to furnish (E)-N-tert-butoxycarbonyl- N-but-2-enylbenzylamine 1a 6 (13 mg 30) and N-tert-butoxycarbonylbenzylamine (16 mg 48).(1S*,2R*)-N-tert-Butoxycarbonyl-2-methyl-1-phenylbut-3-enylamine 3a Tetrabutylammonium fluoride (1.1 ml of a 1 M solution in tetrahydrofuran 1.1 mmol 5 equiv.) was added to a stirred solution of (1S*,2R*)-N-tert-butoxycarbonyl-2-methyl-1-phenyl-3- (phenyldimethylsilyl)but-3-enylamine 3c (85 mg 0.2 mmol) in dimethyl sulfoxide. After stirring for 2 h at 100 8C (oil bath temperature) the reaction mixture was cooled diluted with ethyl acetate (10 ml) washed sequentially with water (4 times; 10 ml) and brine (10 ml) dried thoroughly over magnesium sulfate and concentrated in vacuo to give an off-white solid (34 mg).Purification by flash column chromatography (15 times; 1 cm silica 10 ethyl acetatendash;light petroleum) furnished the title compound 3a as a white solid (26 mg 47).6 Acknowledgements We dedicate this paper to the memory of Mr S. A. Johnson an able chemist who was called away from his life on this earth. This work was supported by Zeneca Agrochemicals and the University of Sheffield. We would also like to thank The Royal Society and Zeneca (Strategic Research Fund award) for additional financial support. References 1 For a recent review see T. Nakai and K. Mikami Org. React. 1994 46 105. 2 (a) M. A. Reetz and D. Schinzer Tetrahedron Lett. 1975 3485; (b) C.A. Broka and T. Shen J. Am. Chem. Soc. 1989 111 2981; (c) Y. Murata and T. Nakai Chem. Lett. 1990 2069; (d) I. Coldham J. Chem. Soc. Perkin Trans. 1 1993 1275; (e) R. E. Gawley Q. Zhang and S. Campagna J. Am. Chem. Soc. 1995 117 11 817; ( f ) M. Gulea-Purcarescu E. About-Jaudet N. Collignon M. Saquet and S. Masson Tetrahedron 1996 52 2075. 3 T. Durst R. V. D. Elzen and M. J. Le Belle J. Am. Chem. Soc. 1972 94 9261. 4 (a) J. Ahman and P. Somfai J. Am. Chem. Soc. 1994 116 9781; (b) I. Coldham A. J. Collis R. J. Mould and R. E. Rathmell J. Chem. Soc. Perkin Trans. 1 1995 2739. 5 J. C. Anderson D. C. Siddons S. C. Smith and M. E. Swarbrick J. Chem. Soc. Chem. Commun. 1995 1835. 6 J. C. Anderson D. C. Siddons S. C. Smith and M. E. Swarbrick J. Org. Chem. 1996 61 4820. 7 P. v. R. Schleyer T.Clark A. J. Kos G. W. Spitznagel C. Rohde D. Arad K. N. Houk and N. G. Rondan J. Am. Chem. Soc. 1984 106 6467. 8 Here we draw an analogy to the calculated transition state for the oxy-2,3 Wittig rearrangement. Y.-D. Wu K. N. Houk and J. A. Marshall J. Org. Chem. 1990 55 1421. See also K. Mikami T. Uchida T. Hirano Y.-D. Wu and K. N. Houk Tetrahedron 1994 50 5917. 9 J. C. Anderson M. E. Swarbrick and C. A. Roberts unpublished results. 10 I. Fleming J. Dunoduegrave;s and R. Smithers Org. React. 1989 37 57. 11 H. Oda M. Sato Y. Morizawa K. Oshima and H. Nozaki Tetrahedron 1985 41 3257. 12 A. G. Brook J. M. Duff and D. G. Anderson Can. J. Chem. 1970 48 561. 13 L. E. Overman J. Am. Chem. Soc. 1976 98 2901. 14 K. Burgess and L. D. Jennings J. Am. Chem. Soc. 1991 113 6129. 15 K. Takaki M.Okada M. Yamada and K. Negoro J. Org. Chem. 1982 47 1200. Paper 6/08226B Received 5th December 1996 Accepted 21st January 1997 J. Chem. Soc. Perkin Trans. 1 1997 1517 Diastereoselective acyclic aza-2,3 Wittig sigmatropic rearrangements James C. Anderson,*,dagger;,a Stephen C. Smith b and Martin E. Swarbrick a a Department of Chemistry University of Sheffield Sheffield UK S3 7HF b Zeneca Agrochemicals Jealottrsquo;s Hill Research Station Bracknell Berkshire UK RG42 6EY The scope of anion-stabilising groups in promoting and controlling the diastereoselection of the aza-2,3 Wittig sigmatropic rearrangement has been assessed by the syntheses of allylic amines 1cndash;g that have incorporated SiPhMe2 Ph SPh SOPh and SO2Ph respectively at the C-2 position. The subsequent anionic 2,3-sigmatropic rearrangements are analysed with respect to the extent of diastereoselection of the product homoallylic amines 2 and 3.It appears that silicon not only is the most efficient at electronically facilitating this rearrangement but its steric bulk controls the diastereoselectivity of the process exclusively. Phenyl and phenylthio substituents also have a similar but decreased effect on diastereoselection that mirrors their lower steric bulk in comparison to the silicon derivative. Sulfoxide and sulfone substituents are incompatible with the reaction conditions required for rearrangement. Introduction Despite the numerous synthetic applications of the 2,3 Wittig sigmatropic rearrangement of allylic ethers (Scheme 1 X = O),1 the use of the aza congener (Scheme 1 X = N) has been limited by the reluctance of simple allyl amines to undergo this transformation.2 The first unequivocal example of this rearrangement 3 which is driven by relief of ring strain has been extended by others to include vinyl aziridines.4 The 2,3- rearrangement of N-allyl nitrogen ylides has been shown to be potentially useful.2e We have concentrated our efforts on the acyclic variant of this rearrangement and want to develop the aza-2,3 Wittig sigmatropic process into a versatile method for the preparation of unnatural amino acids. To this end we have managed to markedly accelerate our preliminary reaction 5 and control the diastereoselectivity of the acyclic rearrangement by the incorporation of a trimethylsilyl group at the C-2 position of our substrate (Scheme 2).6 We believe the silicon atom due to its ability to stabilise adjacent negative charge,7 is stabilising the transition state,8 thus reducing the activation energy of the reaction.The inherent bulk of the silyl group is dictating the diastereoselection.6 This strategy has allowed the acyclic Scheme 1 X R1 R2 HX R1 R2 X = O NR3 anionic 2,3 shift Scheme 2 Reagents and conditions BuLi Et2Ondash;HMPA (4 1); a X = H 278 to 240 8C 14 h 82; b X = SiMe3 278 8C 10 min 88 N Me Ph Boc X HN Me Ph Boc HN Me Ph Boc X X a X = H ds ratio of 2:3 = 3:2 b X = SiMe3 ds ratio of 2:3 = 1:20 3 1a X = H 1b X = SiMe3 + 2 2 dagger;E-mail j.anderson@sheffield.ac.uk aza-2,3 Wittig rearrangement to become more applicable to a wider range of substrates.9 We report here the first examples of other anion-stabilising groups successfully incorporated into rearrangement precursors 1 that both facilitate and increase the synthetic scope of the aza-2,3 Wittig rearrangement.Our first concern was that we could not remove the trimethylsilyl group from 3 presumably because the accepted mechanism would require the formation of an incipient primary carbocation. 10 Although there is a rich chemistry associated with vinyl silanes 10 that could be applied to compounds such as 3 our methodology would be more versatile if the silyl group could also be removed at an early stage. An added incentive was that we could obtain unambiguous proof of diastereoselection from the desilylated product 3 (X = H).5 Following an isolated report that the phenyldimethylsilyl group could be removed from the C-2 position of a vinyl silane with tetrabutyl ammonium fluoride (TBAF),11 we sought to obtain 1c (X = SiPhMe2).We were also interested in the rearrangements of compounds analogous to 1 where X = Ph SPh S(O)Ph and SO2Ph (1dndash;g respectively); as all these groups are capable of stabilising an adjacent negative charge and could control diastereoselectivities in a manner similar to that found with SiMe3 (vide supra). Results and discussion Allylic alcohols 4cndash;e were prepared from the addition of the corresponding a-lithio-a-substituted vinyl precursors to acetaldehyde. In the case of the phenyldimethylsilane derivative 4c we had to develop a reliable synthesis of (1-bromovinyl)- phenyldimethylsilane based upon a description in the literature of the triphenyl congener.12 Addition of bromine to phenyldimethylvinylsilane and then elimination of hydrogen bromide with refluxing pyridine produced the desired halide in 62 yield.Allylic alcohols 4cndash;e were then transformed into the desired rearrangement precursors 1cndash;e via the established procedure for stereoselective conversion of secondary allylic alcohols to allyl amides 5cndash;e (Scheme 3).13 Compounds 1f and 1g were obtained from the controlled oxidation of 1e. Rearrangement of 1c was carried out by treatment with BuLi at 278 8C in tetrahydrofuran (THF) for 14 h to give the rearranged product 3c in 81 yield with complete diastereoselectivity (Scheme 4). This diastereoisomer exhibited characteristic chemical shifts in its NMR spectrum that we had used to assign the trimethylsilyl analogue (Table 1).6 Treatment with 1518 J. Chem. Soc. Perkin Trans.1 1997 TBAF in DMSO under standard literature conditions 11 produced a single diastereoisomer of the desilylated product in 47 yield. This compound had an identical NMR spectrum to the minor diastereoisomer 3a (Scheme 3) obtained from our first rearrangement the structure of which had been proven by correlation to authentic isoleucine.5 Treatment of 1d with BuLi in THFndash;HMPA (4 1) at 278 8C and then at 240 8C for 14 h led to a mixture of 2d and 3d in 71 yield with a di
机译:J. Chem. Soc. Perkin Trans. 1 1997 1517 非对映选择性无环氮杂-[2,3] Wittig sigmatropic 重排 James C. Anderson,*,†,a Stephen C. Smith b 和 Martin E. Swarbrick a a 谢菲尔德大学化学系 谢菲尔德英国 S3 7HF b Zeneca Agrochemicals Jealott's Hill Research Station Bracknell Berkshire UK RG42 6EY 阴离子稳定基团在促进和控制 aza-[2,3] Wittig sigmatropic 重排的非对映选择方面的范围已通过以下方式评估:烯丙基胺 1c–g 的合成,分别在 C-2 位掺入 SiPhMe2 Ph、Sph、SOPh 和 SO2Ph。随后的阴离子 [2,3]-Σ 重排根据产物同烯丙胺 2 和 3 的非对映选择程度进行了分析。看来,硅不仅在电子方式促进这种重排方面最有效,而且其空间体积仅控制该过程的非对映选择性。苯基和苯硫基取代基对非对映选择的影响也类似,但影响较小,与硅衍生物相比,这反映了它们较低的空间体积。亚砜和砜取代基与重排所需的反应条件不相容。引言 尽管烯丙基醚的 [2,3] Wittig sigmatropic 重排(方案 1 X = O)1 有许多合成应用,但偶氮同系物(方案 1 X = N)的使用受到简单烯丙基胺不愿进行这种转变的限制。2 这种重排的第一个明确的例子 3 是由环应变的缓解驱动的,已被其他人扩展到包括乙烯基氮丙啶.4 N-烯丙基氮酰亚化物的 [2,3]- 重排已被证明具有潜在的有用性.2e 我们专注于这种重排的无环变体,并希望将 aza-[2,3] Wittig sigmatropic 过程开发成一种制备非天然氨基酸的通用方法.为此,我们设法显着加速了我们的初步反应 5 并通过在底物的 C-2 位置掺入三甲基硅烷基团来控制非环重排的非对映选择性(方案 2).6 我们相信硅原子由于其稳定相邻负电荷的能力,7 正在稳定过渡态,8从而降低反应的活化能。甲硅烷基的固有体积决定了非对映选择。6 该策略允许无环方案 1 X R1 R2 HX R1 R2 X = O NR3 阴离子 [2,3] 移位方案 2 试剂和条件 BuLi Et2O–HMPA (4, 1);a X = H 278 至 240 8C 14 h 82%;b X = SiMe3 278 8C 10 分钟 88% N Me Ph Boc X HN Me Ph Boc HN Me Ph Boc X a X X = H ds 比率 2:3 = 3:2 b X = SiMe3 ds 比率 2:3 = 1:20 3 1a X = H 1b X = SiMe3 + 2 2 †电子邮件 j.anderson@sheffield.ac.uk aza-[2,3] Wittig重排使其更适用于更广泛的底物.9 我们在这里报告了其他阴离子稳定基团成功的第一个例子掺入重排前体 1 中,既促进又增加了 aza-[2,3] Wittig 重排的合成范围。我们首先担心的是,我们无法从3中去除三甲基硅烷基,大概是因为公认的机制需要形成早期的初级碳正离子。10 尽管乙烯基硅烷 10 具有丰富的化学成分,可以应用于化合物,例如 3,但如果硅烷基团也可以在早期阶段去除,我们的方法将更加通用。另一个激励因素是,我们可以从脱硅烷化产物 3 (X = H) 中获得非对映选择的明确证据.5 在一份孤立的报道中,苯基二甲基硅烷基可以用四丁基氟化铵 (TBAF) 从乙烯基硅烷的 C-2 位置去除,11 我们试图获得 1c (X = SiPhMe2)。我们还对类似于 1 的化合物的重排感兴趣,其中 X = Ph、Sph、S(O)Ph 和 SO2Ph (分别为 1d–g);因为所有这些基团都能够稳定相邻的负电荷,并且可以以类似于 SiMe3 的方式控制非对映选择性(参见上文)。结果与讨论 将相应的a-锂基-a-取代的乙烯基前驱体加入乙醛制备了烯丙基醇4c–e。在苯基二甲基硅烷衍生物4c的情况下,我们必须根据文献中对三苯同系物的描述开发(1-溴乙烯基)-苯基二甲基硅烷的可靠合成.12将溴添加到苯基二甲基乙烯基硅烷中,然后用回流吡啶消除溴化氢,以62%的收率产生所需的卤化物。然后通过已建立的将仲烯丙醇转化为烯丙基酰胺5c-e的立体选择性转化程序将烯丙醇4c-e转化为所需的重排前体1c-e(方案3).13化合物1f和1g是从1e的受控氧化中获得的。通过在278 8C的四氢呋喃(THF)中用BuLi处理14小时进行1c的重排,使重排产物3c的收率为81%,具有完全非对映选择性(方案4)。这种非对映异构体在其核磁共振谱图中表现出特征性的化学变化,我们曾用它来分配三甲基硅烷基类似物(表1).6 用 1518 J. Chem. Soc. Perkin Trans 处理。1 1997 TBAF 在标准文献条件下的 DMSO 11 中以 47% 的收率产生了脱硅烷化产物的单个非对映异构体。该化合物具有与从我们的第一次重排中获得的次要非对映异构体 3a(方案 3)相同的 NMR 谱图,其结构已通过与真正的异亮氨酸的相关性得到证明.5 在 278 8C 和 240 8C 下用 BuLi 在 THF-HMPA (4, 1) 中处理 1d 然后在 240 8C 下处理 14 小时,导致 2d 和 3d 的混合物,收率为 71%,非对映异构体比为 1,7(方案 5)。同样,在相同条件下对1e进行处理,通过色谱法将2e、N-叔丁氧羰基苄胺和3e以49%的收率与3e进行不可分离的混合物,比例为1,2,4(方案5)。纯非对映异构体 3d 和 3e 的样品可以通过色谱混合产品的研磨得到 - 方案 3 试剂和条件 i ButLi Et2O 278 8C MeCHO;ii BuLi TMEDA THF 278 8C MeCHO;iii KH 猫。Cl3CCN;iv 二甲苯 140 8C;v (Boc)2O 然后是 NaOH;vi KH BnBr;vii mCPBA;viii Oxone Br SiPhMe2 Br Ph SPh OH Me X NH Me Boc X N Me Ph Boc X 4c X = SiPhMe2 86% 4d X = Ph 89% 4e X = SPh 69% 5c 40% 5d 61% 5e 41% 1c 95% 1d 94% 1e 82% 1f X = S(O)Ph 90% 1g X = SO2Ph 95% i iii iv v vii i ii viii 方案 4 试剂和条件 i BuLi THF 278 8C 14 h;ii TBAF DMSO 100 8C 2 h N Me Ph Boc SiPhMe2 HN Me Ph Boc Me2PhSi HN Me Ph Boc 3c 1c 3a i ii 方案 5 试剂和条件 i BuLi THF–HMPA (4 1) 278 8C 1 h 然后 240 8C 14 h HN Me Ph Boc HN Me Ph Boc X X N Me Ph Boc X 1d X = Ph 1e X = SPh 2d,e 3d,e + i 表 1 2 和 3 的 NMR 数据 1b 1c 1d 1e X SiMe3 SiPhMe2 Ph SPh 非对映选择性 a 2 3 Ph > SPh.我们预计亚砜1f和砜1g类似物的行为相似;1f提供了手性阴离子稳定乙烯基取代基的潜力,该取代基可以控制该过程的这一特定变体的对映体选择。不幸的是,在标准条件下用BuLi处理1f仅导致脱硫原料1a(30%)和N-叔丁氧羰基苄胺(48%)(方案7)。在一系列类似条件下对 1g 和 1f 进行处理导致了复杂的产品混合物,其中任何一种都无法识别。我们只能得出结论,亚砜和砜取代基使系统与促进阴离子 S 形重排所必需的强碱不相容。图 1 HN Ph Me Boc HN Ph Me Boc H HNBoc Ph H Me H Ph BocNH H Me X X X X 3 1 1 2 2 方案 6 主要非对映异构体的过渡态模型 Me H N Ph Boc X Me H N Ph Boc X N Me Ph Boc X H Me Ph Boc X D - d- 1 3 方案 7 试剂和条件 i BuLi THF–HMPA (4 1) 278 8C1 小时然后 240 8C 14 小时 N Me Ph Boc (O)SPh N Me Ph Boc Boc Ph HN + 1a 30% 48% i 1f J.Chem. Soc. Perkin Trans. 1 1997 1519 氮杂-[2,3] Wittig重排已被证明通过在中心乙烯基碳原子掺入某些阴离子稳定的乙烯基取代基而加速。非对映选择范围从 4 1 到 20 1 取决于烯丙基胺 1 中取代基 X 的空间体积,其中甲硅烷基取代基成为领跑者。去除了苯基二甲基硅烷基团验证了我们的结构分配,并增加了硅稳定的氮杂-[2,3]Wittig重排的合成效用。苯基和苯硫基取代基进一步扩展了该工艺。不久将报告使用重排的前体作为合成结构单元,并且正在对其他不太明显的加速基团进行调查。6 (1-溴乙烯基)苯基二甲基硅烷 溴(1.84 ml,0.036 mol,1当量)在四氯化碳(20 ml 1 2 × 5 ml洗涤液)中通过套管滴加到苯基二甲基乙烯基硅烷(5.78 g 0.036 mol)的四氯化碳(30 ml)中,在0 8C下。将溶液在0、8C下搅拌10分钟,依次用含有一定亚硫酸氢钠(3×50毫升)和盐水(50毫升)的饱和碳酸氢钠水洗涤,用硫酸镁干燥,真空浓缩,得到粗二溴化物(12.62克),呈淡黄色油状。将该粗产物溶于吡啶(50ml)中并回流14小时。冷却至室温后,用乙醚(100ml)稀释深棕色反应混合物,并用水(70ml)洗涤。用乙醚(2×70ml)进一步萃取水层,并用饱和硫酸铜溶液反复洗涤合并的有机物,直到除去所有吡啶,如水相所示,保持浅蓝色。然后用盐水(70ml)洗涤有机物,用硫酸镁干燥并真空浓缩,得到淡棕色油(5.63g),通过快速柱色谱法(15×5cm二氧化硅轻石油)纯化,得到溴乙烯基硅烷(5.32g,62%)为无色油(发现C,50.2;H 5.8;Br 33.4.C10H13BrSi 要求 C 49.8;H 5.4;溴 33.1%);Nmax(薄膜)/cm21 3071 2962 1592 1429 1397 1250 1114 1070 915;dH(250 MHz;CDCl3) 0.49 [6H s (CH3)2Si] 6.17 (1H d J 1.7 CHH]] ) 6.35 (1H d J 1.7 CHH]] ) 7.30–7.70 (5H m ArH);dC(63兆赫;CDCl3) 23.4 128.0 129.8 131.5 134.1 135.2 136.7;市率(EI1) 241.9940 (31% M1.C10H13 81BrSi 需要 M 241.9949) 239.9962 (32 M1.C10H13 79BrSi 需要 M 239.9970) 227 (51)/225 (50 M1 2 CH3) 201 (100)/199 (100) 161 (23 M1 2 Br) 145 (37) 135 (97) 105 (46)。将3-苯基二甲基硅基丁-3-烯-2-醇(15.5ml戊烷溶液,26.4mmol,2.1当量)滴加到(1-溴乙烯基)苯基二甲基硅烷(3.03g,12.6mmol)在乙醚(40ml)中的搅拌溶液中,浓度为278 8C。完全加入后,在278 8C下搅拌反应1小时。乙醛溶液(1.40ml 25.1 mmol 2当量。)的乙醚(10ml)溶液,然后通过套管滴加。在278 8°C下再搅拌一个小时后,将反应升温至室温。加入水(50毫升),分离混合物,并用乙醚(3×30毫升)萃取水层。将合并的有机物用硫酸镁干燥并真空浓缩,得到黄色油(3.24 g),通过快速柱色谱法(15 × 5 cm 二氧化硅 15% 乙酸乙酯-轻质石油)纯化,得到 4c(2.23 g 86%),为无色油(参见 C 69.4;H 8.8.C12H18OSi 要求 C 69.8;H 8.8%);Nmax(薄膜)/cm21 3358 1428 1250 1111 845;dH(250 MHz;CDCl3) 0.42 (3H s CH3Si) 0.44 (3H s CH3Si) 1.20 (3H d J 6.4 CH3CH) 1.39 (1H d J 4.3 OH by D2O 交换) 4.44 (1H qdt J 6.4 4.3 1.2 CH3CH) 5.45 (1H dd J 2.4 1.2 CHH]] ) 5.91 (1H dd J 2.4 1.2 CHH]] ) 7.30–7.65 (5H m ArH);dC(63兆赫;CDCl3) 22.3 22.1 24.1 71.7 124.7 127.9 129.1 133.9 138.4 155.0;分子率 (EI1) 191.0893 (25% M1 2 CH3.C11H15OSi 需要 M 2 CH3 191.0892) 137 (100) 135 (44) 105 (12) 75 (26)。将3-苯基丁-3-烯-2-醇 4d a-溴苯乙烯(3ml 23.1 mmol)以与4c相同的方式转化为4d,并通过快速柱层析(15×5cm二氧化硅,15%乙酸乙酯-轻石油)纯化,得到淡稻草色油(3.06g 89%);14 dH(250 MHz;CDCl3) 1.32 (3H d J 6.4 CH3) 1.79 (1H d J 4.0 OH 通过 D2O 交换) 4.82 (1H qd J 6.4 4.0 CHOH) 5.28 (1H t J 0.9 CHH]] ) 5.36 (1H t J 1.2 CHH]] ) 7.25–7.45 (5H m ArH)。将3-苯硫基丁-3-烯-2-醇 4e 苯基乙烯基硫醚(5ml,0.038mol)在四氢呋喃(40ml 1,2×10ml洗涤液)中,通过套管滴加到丁基锂(16.1ml,2.5M溶液,己烷溶液,0.040mol,1.05当量)和TMEDA(6.1ml,0.040mol,1.05当量)的四氢呋喃(120ml)在278 8C的搅拌溶液中。在278 8C下搅拌2小时后,通过套管滴加乙醛溶液(4.2ml,0.077mol 2当量)在四氢呋喃(10ml 1,2×2ml洗涤液)中。完全加入后,将反应在278 8°C下再搅拌一个小时,然后加热至室温。加入饱和氯化铵水溶液(100毫升),分离混合物,并进一步用乙醚(3×70毫升)萃取水层。将合并的有机物用硫酸镁干燥,真空浓缩,得到粗黄油(9.1 g),通过快速柱色谱法(15×7cm二氧化硅,20%乙酸乙酯-轻质石油)纯化,得到醇4e(4.75 g,69%),为黄色油;15 dH(250 MHz;CDCl3) 1.43 (3H d J 6.4 CH3) 1.93 (1H br s OH by D2O 交换) 4.37 (1H qt J 6.4 0.6 CHOH) 4.97 (1H d J 0.9 CHH]] ) 5.50 (1H d J 0.9 CHH]] ) 7.20–7.50 (5H m ArH).化合物 1 的制备 我们之前已经报道了通过 5.6 制备 1 的一般方法 4 (Z)-N-叔丁氧羰基-2-(苯基二甲基硅基)丁-2-烯胺 5c。化合物5c以40%的收率从4c制备为无色油;Nmax(薄膜)/cm21 3356 1703 1505 1366 1249 1171;dH(250 MHz;CDCl3) 0.41 [6H s (CH3)2Si] 1.42 [9H s (CH3)3C] 1.64 (3H dt J 7.0 1.2 CH3CH]] ) 3.77 (2H m NCH2CH]] ) 4.35 (1H br s NH by D2O 交换) 6.31 (1H qt J 7.0 1.2 CH3CH]] ) 7.30–7.55 (5H m ArH);dC(63兆赫;CDCl3) 21.5 17.8 47.9 79.1 127.9 128.9 133.7 134.8 140.5 155.4;m/z (CI1) 306.1880 (13% MH1.C17H28NO2Si 需要 MH1 306.1889) 278 (17) 248 (13 M1 2 But) 234 (47) 172 (100) 135 (16) 57 (But)。(E)-N-叔丁氧羰基-2-苯基丁-2-烯胺 5D.化合物5d以61%的收率从4d制备为无色油;Nmax(薄膜)/cm21 3351 1704 1505 1366 1249 1172 702;dH(250 MHz;CDCl3) 1.40 [9H s (CH3)3C] 1.59 (3H dt J 7.0 1.2 CH3) 3.97 (2H m NCH2CH]] ) 4.55 (1H br s NH by D2O 交换) 5.71 (1H q J 7.0 CH]] ) 7.15–7.40 (5H m ArH);dC(63兆赫;CDCl3) 14.5 28.4 47.4 79.1 123.0 127.0 128.2 128.7 138.3 139.6 155.8;市率(EI1) 247.1575 (3.8% M1.C15H21NO2 需要 M 247.1572) 191 [100 MH1 2 (CH3)3C] 176 (9) 146 (6) 130 (37) 115 (8)。(E)-N-叔丁氧羰基-2-苯硫代丁-2-烯胺 5e.化合物 5e 以 41% 的收率从 4e 制备为黄色固体 mp 52–54 8C(发现 C 64.4;H 7.5;N 4.9;第 11.6 条。C15H21NO2S 需要 C 64.5;H 7.6;N 5.0;S 11.5%);Nmax(薄膜)/cm21 3348 1702 1584 1507 1478 1366 1249 1170;dH(250 MHz;CDCl3) 1.41 [9H s (CH3)3C] 1.90 (3H dt J 6.7, 1520 J. Chem. Soc. Perkin Trans. 1 1997 1.2 CH3) 3.77 (2H d J 5.5 NCH2) 4.77 (1H br s NH by D2O 交换) 6.25 (1H q J 6.7 CH3CH]] ) 7.15–7.30 (5H m ArH);dC(63兆赫;CDCl3) 15.5 28.4 46.4 79.3 126.1 128.9 129.0 130.8 133.6 134.6 155.6;市率 (EI1) 279.1291 (32% M1.C15H21NO2S 需要 M 279.1293) 223 [MH1 2 (CH3)3C 74] 162 (96) 149 (37) 129 (22) 114 (92) 57 (100)。(Z)-N-叔丁氧羰基-N-[2-(苯基二甲基硅基)丁-2-烯基]苄胺 1c.化合物1c以95%的收率从5c制备为无色油;Nmax(薄膜)/cm21 1694 1454 1410 1365 1248 1168 1111;dH(250 MHz;CDCl3) 0.38 [6H s (CH3)2Si] 1.45 [9H s (CH3)3C] 1.67 (3H dt J 7.0 1.5 CH3CH]] ) 3.93 (2H br m NCH2) 4.31 (2H br m NCH2) 6.12 (1H q J 7.0 CH3CH]] ) 7.10–7.55 (10H m ArH);dC(63兆赫;CDCl3) 21.5 17.7 28.4 48.7 51.9 79.6 126.7 127.1 127.6 127.8 128.4 128.8 133.6 138.4 139.0 155.9;市率(EI1) 395.2279 (9% M1.C24H33NO2Si 需要 M 395.2281) 338 [17 M1 2 (CH3)3C] 324 (60) 262 (100) 135 (51) 91 (65)。(E)-N-叔丁氧羰基-N-(2-苯基丁-2-烯基)苄胺 1D.化合物1d以94%的收率从5d制备为淡黄色油(发现C 78.1;H 8.0;N 3.95.C22H27NO2 需要 C 78.3;H 8.1;N 4.15%);Nmax(薄膜)/cm21 1694 1454 1416 1365 1243 1167 1124 879 700;dH(250 MHz;CDCl3) 1.30 [9H s (CH3)3C] 1.55 (3H m CH3) 3.87–4.40 (4H m CH2NCH2) 5.50 (1H m CH]] ) 7.00–7.30 (10H m ArH);dC(63兆赫;CDCl3) 14.4 28.3 48.3 52.6 79.5 123.5 124.0 126.9 127.1 127.4 128.1 128.4 128.8 137.3 138.3 155.7;市率(EI1) 337.2037 (7% M1.C22H27NO2需要 M 337。2042) 281 [74 MH1 2 (CH3)3C] 132 (27) 91 (100) 57 (46).(E)-N-叔丁氧羰基-N-(2-苯硫基丁-2-烯基)苄胺 1E.化合物1e以82%的收率从5e制备为黄色油;Nmax(薄膜)/cm21 1695 1584 1477 1453 1410 1365 1244 1167 1117 878;dH(250 MHz;CDCl3) 1.40 [9H s (CH3)3C] 1.94 (3H dt J 6.7 1.5 CH3) 3.87 (2H m NCH2) 4.38 (2H m NCH2) 6.03–6.17 (1H m CH3CH]] ) 7.05–7.35 (10H m ArH);dC(63兆赫;CDCl3) 15.4 28.3 49.1 51.1 79.8 125.8 127.1 127.3 127.9 128.3 128.9 133.4 135.2 138.0 155.9;市率 (EI1) 369.1770 (0.8% M1.C22H27NO2S 需要 M 369.1763) 313 [1.2 MH1 2 (CH3)3C] 296 (4) 204 (100) 91 (58) 57 (25)。(E)-N-叔丁氧羰基-N-(2-苯基亚磺酰基-2-烯基)-苄胺 1f 间氯过苯甲酸(0.56克1当量)在室温下分份加入到(E)-N-叔丁氧羰基-N-(2-苯基硫代丁-2-烯基)苄胺1e(1.20g)在二氯甲烷(30ml)中的搅拌溶液中。1小时后,再加入二氯甲烷(20毫升),并将反应混合物用饱和碳酸氢钠水溶液(3×50毫升)洗涤,用硫酸镁干燥,真空浓缩,得到黄色油(1.60克)。通过快速柱层析(15×3cm二氧化硅,30%乙酸乙酯-轻石油)纯化,得到亚砜1f(1.13g,90%),为粘稠的淡黄色油;Nmax(薄膜)/cm21 1694 1454 1415 1366 1247 1166 1044 749 697;dH(250 MHz;CDCl3) 1.37 [9H m (CH3)3C] 2.18 (3H dt J 7.3 1.6 CH3) 3.60–4.30 (4H m CH2NCH2) 5.90–6.30 (1H m CH3CH]] ) 7.00–7.55 (10H m ArH);dC(63兆赫;CDCl3) 14.9 28.3 42.2 50.1 80.1 123.9 127.2 127.7 128.4 129.1 131.7 134.6 138.1 140.6 142.6 155.8;市率 (EI1) 385.1709 (19% M1.C22H27NO3S 需要 M 385.1712) 329 [16 MH1 2 (CH3)3C] 312 [25 M1 2 (CH3)3CO] 284 [15 M1 2 (CH3)3COCO] 268 (47 M1 2 PhSO) 204 (100) 158 (35) 144 (40)。(E)-N-叔丁氧羰基-N-(2-苯磺酰基-2-烯基)-苄胺1g 将Oxone(5.79g 3当量)和水(15ml)的悬浮液分批加入到0 8C下1e(1.16g)的甲醇(25ml)搅拌溶液中。完全加入后,将反应加热至室温并搅拌14小时。真空除去甲醇,残留物在水(15毫升)和二氯甲烷(15毫升)之间分配,分离有机层,水层进一步用二氯甲烷(3×15毫升)萃取。将合并的有机物用硫酸镁干燥,真空浓缩,得到粗黄油,经快速柱色谱法(15×3cm二氧化硅,20%乙酸乙酯-轻质石油)纯化,得到亚砜1g(1.20g,95%),呈粘稠的淡黄绿色油;Nmax(薄膜)/cm21 1694 1447 1410 1366 1305 1247 1159 1137 1083 729 690;dH(250 MHz;CDCl3) 1.40 [9H m (CH3)3C] 2.15 (3H dt J 7.6 1.5 CH3) 4.05 (2H br m NCH2) 4.33 (2H s NCH2) 6.00–6.35 (1H br m CH3CH]] ) 7.05–7.90 (10H m ArH);dC(63兆赫;CDCl3) 14.7 28.4 48.2 49.9 80.6 127.2 127.6 128.7 129.4 133.5 136.8 137.6 138.1 140.6 141.5 155.7;男/兹 (EI1) 401.1658 (0.3% M1.C22H27NO4S 需要 M 401.1661) 345 [10 MH1 2 (CH3)3C] 300 [37 M1 2 (CH3)3COCO] 204 (59) 150 (38) 144 (31) 106 (90) 91 (100) 77 (24) 57 (85)。(1S*,2R*)-N-叔丁氧羰基-2-甲基-1-苯基-3-(苯基二甲基硅基)丁-3-烯胺3c丁基锂(0.66ml的2.5M己烷溶液1.7 mmol 1.2当量)在278 8C下滴加到搅拌的(Z)-N-叔丁氧羰基-N-[2-(苯基二甲基硅基)丁-2-烯基]-苄胺1c(0.55克,1.4毫摩尔)的四氢呋喃(11毫升)中。在278 8C下搅拌14小时后,通过加入甲醇(0.1ml)淬灭反应并加热至室温。然后将反应混合物分配到饱和碳酸氢钠(20毫升)和乙醚(15毫升)之间,分离有机层,进一步用乙醚(3×15毫升)萃取水层。将合并的有机物用硫酸镁干燥并真空浓缩,得到粘稠的淡黄色油(0.63克),通过快速柱层析(12×2.5厘米二氧化硅,7%乙酸乙酯-轻石油)纯化,得到标题化合物3c,为无色油(0.44克,81%)(发现C,72.4;H 8.6;N 3.8.C24H33NO2Si 需要 C 72.9;H 8.4;N 3.5%);Nmax(薄膜)/cm21 3425 1702 1496 1366 1250 1171 817 734 701;dH[250 MHz;(CD3)2SO] 0.42 [3H s (CH3)Si] 0.47 [3H s (CH3)Si] 0.53 (3H d J 7.0 ]] CCHCH3) 1.15 [9H s (CH3)3C] 2.59 (1H dq J 9.6 7.0 =CCHCH3) 4.47 (1H t J 9.6 NCHPh) 5.42 (1H d J 2.4 HHC]] ) 5.81 (1H d J 2.4 HHC]] ) 6.87 (1H d J 9.6 NH by D2O 交换) 6.95–7.45 (10H m ArH);dC(63兆赫;CDCl3) 22.6 19.7 28.4 42.2 59.3 79.0 127.0 127.1 127.5 128.0 128.2 129.3 134.1 137.9 142.8 152.9 154.9;市率(EI1) 395.2274 (3.7% M1.C24H33NO2Si 需要 M 395.2281) 382 (2) 262 (7) 206 (49) 172 (9) 150 (100) 135 (48) 106 (79) 91 (7) 57 (94)。(1S*,2R*)-N-叔丁氧羰基-2-甲基-1,3-二苯基丁-3-烯基胺3d丁基锂(1.64ml 2.5 M溶液,己烷溶液,1.1 mmol 1.2当量)在278 8C下滴加到(E)-N-叔丁氧羰基-N-(2-苯基丁-2-烯基)苄胺1d(1.15g 3.4 mmol)的四氢呋喃-HMPA(4,1,23ml)中。在278 8°C下搅拌1小时后,将反应缓慢升温至240 8°C并搅拌14小时,然后加入甲醇(0.2ml)淬灭。然后将反应混合物分配在饱和碳酸氢钠(50毫升)和乙醚(30毫升)之间,分离有机层,水层进一步用乙醚(3×30毫升)萃取。将合并的有机物用硫酸镁干燥并在真空中浓缩,得到粘稠的黄色胶(2.3g),通过快速柱色谱法(12×4cm二氧化硅,10%乙酸乙酯-轻石油)纯化,得到淡黄色固体(0.82克,71%的7:1标题化合物3d到次要非对映异构体2d的混合物)。用冰冷的轻质石油研磨,主要的非对映异构体仅为白色粉末(0.68 g 59%) mp 123–124 8C (发现 C 77.9;H 7.7;N 4.3.C22H27NO2 J. Chem. Soc. Perkin Trans. 1, 1997, 1521 要求 C 78.3;H 8.1;N 4.2%);Nmax(薄膜)/cm21 3274 1701 1495 1454 1390 1365 1248 1170 701;dH[250 MHz;(CD3)2SO] 0.70 (3H d J 6.7 CH3) 1.30 [9H s (CH3)3C] 3.02 (1H dq J 9.5 6.7 CH3CHC]] ) 4.53 (1H t J 9.5 NHCHPh) 5.11 (1H s CHH]] ) 5.21 (1H s CHH]] ) 7.20–7.50 (11H m ArH 和 NH 通过 D2O 交换);直流[63 MHz;(CD3)2SO] 18.7 28.7 43.8 58.3 78.0 113.2 127.2 127.7 127.9 128.4 128.7 142.6 142.9 151.9 155.2;市率 (EI1) 337.2039 (0.4% M1.C22H27NO2 需要 M 337.2042) 281 [3 MH1 2 (CH3)3C] 236 [10 M1 2 (CH3)3COCO] 206 (38) 196 (24) 150 (87) 106 (83) 91 (47) 57 (100)。(1S*,2R*)-N-叔丁氧羰基-2-甲基-1-苯基-3-苯基硫基丁-3-烯胺 3e (E)-N-叔丁氧羰基-N-(2-苯硫基丁-2-烯基)苄胺1e(0.72g,2.0mmol)在完全相同的条件下用BuLi处理,并处理与3d,得到粘稠的黄色油(1.2g),通过快速柱层析(15×3cm二氧化硅,10%乙酸乙酯-轻石油)纯化,得到淡黄色固体(0.35g,49%的1,2,4次要非对映异构体2e的混合物的1,2,4的混合物)N-叔丁氧羰基苄胺和标题化合物3e)。用冰冷的轻质石油研磨,标题化合物仅为白色粉末(0.19 g 26%),mp 121– 122 8C;Nmax(薄膜)/cm21 3375 1679 1512 1368 1292 1250 1171 742 704;dH[250 MHz;(CD3)2SO] 0.76 (3H d J 7.0 CH3) 1.35 [9H s (CH3)3C] 2.76 (1H dq J 9.8 7.0 CH3CHC]] ) 4.60 (1H s CHH]] ) 4.70 (1H t J 9.5 NHCHPh) 5.30 (1H s CHH]] ) 7.20–7.55 (11H m ArH 和 NH 通过 D2O 交换);直流[63 MHz;(CD3)2SO] 17.7 28.8 46.9 58.2 78.1 113.2 127.4 127.9 128.6 128.7 129.9 133.0 134.1 142.7 149.4 155.1;m/z (EI1) 369.1767 (5% M1.C22H27NO2S 需要 M 369.1762) 296 [5 M1 2 (CH3)3CO] 268 [3 M1 2 (CH3)3COCO] 260 (2 M1 2 Ph) 206 (63) 150 (100) 106 (87) 57 (96)。尝试在完全相同的条件下用丁基锂处理(E)-Ntert-丁氧羰基-N-(2-苯基亚磺酰基-2-烯基)苄胺1f的aza-[2,3]Wittig-Σ-Σt-叔丁氧羰基-N-(2-苯基亚磺酰基丁-2-烯基)-苄胺1f(63mg,0.16mmol),并处理与3d一样,得到粘稠的黄色油(70mg),通过快速柱色谱(15×1cm二氧化硅,20%乙酸乙酯-轻石油)纯化,得到(E)-N-叔丁氧羰基- N-丁-2-烯基苄胺1a 6(13mg,30%)和N-叔丁氧羰基苄胺(16mg,48%)。(1S*,2R*)-N-叔丁氧羰基-2-甲基-1-苯基丁丁-3-烯胺3a四丁基氟化铵(1.1ml四氢呋喃1.1mmol5当量溶液)加入到(1S*,2R*)-N-叔丁氧羰基-2-甲基-1-苯基-3-(苯基二甲基硅基)丁-3-烯胺3c(85mg,0.2mmol)的二甲基亚砜搅拌溶液中。在100,8C(油浴温度)下搅拌2小时后,将反应混合物冷却,用乙酸乙酯(10ml)稀释,依次用水(4×10ml)和盐水(10ml)洗涤,用硫酸镁彻底干燥并在真空中浓缩,得到灰白色固体(34mg)。通过快速柱色谱法(15 × 1 cm 二氧化硅 10% 乙酸乙酯-轻石油)纯化,标题化合物 3a 为白色固体 (26 mg 47%).6 致谢 我们将本文献给 S. A. Johnson 先生,他是一位能干的化学家,他被召唤离开了他在地球上的生活。这项工作得到了Zeneca农用化学品公司和谢菲尔德大学的支持。我们还要感谢英国皇家学会和Zeneca(战略研究基金奖)的额外财政支持。参考文献 1 有关最近的综述,请参阅 T. Nakai 和 K. Mikami,Org. React。1994 46 105.2 (a) M. A. Reetz and D. Schinzer, Tetrahedron Lett. 1975, 3485;(b) C. A. Broka 和 T. Shen, J. Am. Chem. Soc., 1989, 111, 2981;(c) Y. Murata 和 T.Nakai Chem. Lett. 1990, 2069;(d) I. Coldham, J. Chem. Soc. Perkin, Trans. 1, 1993, 1275;(e) R. E. Gawley, Q. Zhang, and S. Campagna, J. Am. Chem. Soc., 1995, 117, 11, 817;( f ) M. Gulea-Purcarescu, E. About-Jaudet, N. Collignon, M. Saquet 和 S. Masson, Tetrahedron 1996, 52, 2075.3 T. Durst, R. V. D. Elzen 和 M. J. Le Belle, J. Am. Chem. Soc. 1972, 94, 9261.4 (a) J. Ahman 和 P. Somfai, J. Am. Chem. Soc., 1994, 116, 9781;(b) I. Coldham, A. J. Collis, R. J. Mould 和 R. E. Rathmell J. Chem. Soc.珀金译本 1 1995 2739.5 J. C. Anderson, D. C. Siddons, S. C. Smith 和 M. E. Swarbrick, J. Chem. Soc. Chem. Commun.1995 1835.6 J. C. Anderson, D. C. Siddons, S. C. Smith 和 M. E. Swarbrick, J. Org. Chem., 1996, 61, 4820.7 P. v. R. Schleyer, T. Clark, A. J. Kos, G. W. Spitznagel, C. Rohde, D. Arad, K. N. Houk 和 N.G. Rondan, J. Am. Chem. Soc., 1984, 106, 6467.8 在这里,我们类比了氧-[2,3] Wittig重排的计算过渡态。Y.-D., Wu, K. N. Houk 和 J. A. Marshall, J. Org. Chem., 1990, 55, 1421.另见K. Mikami, T. Uchida, T. Hirano, Y.-D.Wu 和 K. N. Houk,四面体,1994,50:5917。9 J. C. Anderson、M. E. Swarbrick 和 C. A. Roberts,未发表的结果。10 I. Fleming, J. Dunoduès 和 R. Smithers, Org. React.1989 37 57.11 H. Oda, M. Sato, Y. Morizawa, K. Oshima and H. Nozaki, Tetrahedron, 1985, 41, 3257.12 A. G. Brook、J. M. Duff 和 D. G. Anderson,Can. J. Chem. 1970,48:561。13 L. E. Overman, J. Am. Chem. Soc., 1976, 98, 2901.14 K. Burgess 和 L. D. Jennings, J. Am. Chem. Soc. 1991, 113, 6129.15 K. Takaki、M. Okada、M. Yamada 和 K. Negoro, J. Org. Chem. 1982, 47, 1200.论文 6/08226B 1996 年 12 月 5 日收稿 1997 年 1 月 21 日录用 J.Chem. Soc. Perkin Trans. 1 1997 1517 非对映选择性无环氮杂-[2,3] Wittig sigmatropic 重排 James C. Anderson,*,†,a Stephen C. Smith b and Martin E.Swarbrick a a 谢菲尔德大学化学系 谢菲尔德英国 S3 7HF b Zeneca Agrochemicals Jealott's Hill Research Station Bracknell Berkshire UK RG42 6EY 阴离子稳定基团在促进和控制 aza-[2,3] Wittig sigmatropic 重排的非对映选择方面的范围已通过烯丙基胺 1c–g 的合成进行了评估,这些烯丙胺分别在 C-2 位置掺入了 SiPhMe2、Ph、Sph、SOPh 和 SO2Ph。随后的阴离子 [2,3]-Σ 重排相对于产物同烯丙胺 2 的非对映选择程度进行了分析,3.It 似乎硅不仅在电子上促进这种重排方面最有效,而且其空间体积仅控制该过程的非对映选择性。苯基和苯硫基取代基对非对映选择的影响也类似,但影响较小,与硅衍生物相比,这反映了它们较低的空间体积。亚砜和砜取代基与重排所需的反应条件不相容。引言 尽管烯丙基醚的 [2,3] Wittig sigmatropic 重排(方案 1 X = O)1 有许多合成应用,但偶氮同系物(方案 1 X = N)的使用受到简单烯丙基胺不愿进行这种转变的限制。2 这种重排的第一个明确的例子 3 是由环应变的缓解驱动的,已被其他人扩展到包括乙烯基氮丙啶.4 N-烯丙基氮酰亚化物的 [2,3]- 重排已被证明具有潜在的有用性.2e 我们专注于这种重排的无环变体,并希望将 aza-[2,3] Wittig sigmatropic 过程开发成一种制备非天然氨基酸的通用方法.为此,我们设法显着加速了我们的初步反应 5 并通过在底物的 C-2 位置掺入三甲基硅烷基团来控制非环重排的非对映选择性(方案 2).6 我们相信硅原子由于其稳定相邻负电荷的能力,7 正在稳定过渡态,8从而降低反应的活化能。甲硅烷基的固有体积决定了非对映选择。我们还对类似于 1 的化合物的重排感兴趣,其中 X = Ph、Sph、S(O)Ph 和 SO2Ph (分别为 1d–g);因为所有这些基团都能够稳定相邻的负电荷,并且可以以类似于 SiMe3 的方式控制非对映选择性(参见上文)。结果与讨论 将相应的a-锂基-a-取代的乙烯基前驱体加入乙醛制备了烯丙基醇4c–e。在苯基二甲基硅烷衍生物4c的情况下,我们必须根据文献中对三苯同系物的描述开发(1-溴乙烯基)-苯基二甲基硅烷的可靠合成.12将溴添加到苯基二甲基乙烯基硅烷中,然后用回流吡啶消除溴化氢,以62%的收率产生所需的卤化物。然后通过已建立的将仲烯丙醇转化为烯丙基酰胺5c-e的立体选择性转化程序将烯丙醇4c-e转化为所需的重排前体1c-e(方案3).13化合物1f和1g是从1e的受控氧化中获得的。通过在278 8C的四氢呋喃(THF)中用BuLi处理14小时进行1c的重排,使重排产物3c的收率为81%,具有完全非对映选择性(方案4)。这种非对映异构体在其核磁共振谱图中表现出特征性的化学变化,我们用它来分配三甲基硅烷基类似物(表1).6 在标准文献条件下用 1518 J. Chem. Soc. Perkin Trans. 1 1997 TBAF 在 DMSO 中处理 11 产生脱硅烷化产物的单个非对映异构体,收率为 47%。该化合物的NMR谱图与从我们的第一次重排中获得的次要非对映异构体3a(方案3)相同,其结构已通过与真正的异亮氨酸的相关性得到证明。5 在 278 8C 和 240 8C 下用 BuLi 在 THF-HMPA (4, 1) 中处理 1d 14 小时,导致 2d 和 3d 的混合物,收率为 71%,非对映异构体比为 1 7(方案 5)。同样,在相同条件下对1e进行处理,通过色谱法将2e、N-叔丁氧羰基苄胺和3e以49%的收率与3e进行不可分离的混合物,比例为1,2,4(方案5)。纯非对映异构体 3d 和 3e 的样品可以通过色谱混合产品的研磨得到 - 方案 3 试剂和条件 i ButLi Et2O 278 8C MeCHO;ii BuLi TMEDA THF 278 8C MeCHO;iii KH 猫。Cl3CCN;iv 二甲苯 140 8C;v (Boc)2O 然后是 NaOH;vi KH BnBr;vii mCPBA;viii Oxone Br SiPhMe2 Br Ph SPh OH Me X NH Me Boc X N Me Ph Boc X 4c X = SiPhMe2 86% 4d X = Ph 89% 4e X = SPh 69% 5c 40% 5d 61% 5e 41% 1c 95% 1d 94% 1e 82% 1f X = S(O)Ph 90% 1g X = SO2Ph 95% i iii iv v vii i ii viii 方案 4 试剂和条件 i BuLi THF 278 8C 14 h;ii TBAF DMSO 100 8C 2 h N Me Ph Boc SiPhMe2 HN Me Ph Boc Me2PhSi HN Me Ph Boc 3c 1c 3a i ii 方案 5 试剂和条件 i BuLi THF–HMPA (4 1) 278 8C 1 h 然后 240 8C 14 h HN Me Ph Boc HN Me Ph Boc X X N Me Ph Boc X 1d X = Ph 1e X = SPh 2d,e 3d,e + i 表 1 2 和 3 的 NMR 数据 1b 1c 1d 1e X SiMe3 SiPhMe2 Ph SPh 非对映选择性 a 2 3 Ph > SPh.我们预计亚砜1f和砜1g类似物的行为相似;1f提供了手性阴离子稳定乙烯基取代基的潜力,该取代基可以控制该过程的这一特定变体的对映体选择。不幸的是,在标准条件下用BuLi处理1f仅导致脱硫原料1a(30%)和N-叔丁氧羰基苄胺(48%)(方案7)。在一系列类似条件下对 1g 和 1f 进行处理导致了复杂的产品混合物,其中任何一种都无法识别。我们只能得出结论,亚砜和砜取代基使系统与促进阴离子 S 形重排所必需的强碱不相容。无花果。1 HN Ph Me Boc HN Ph Me Boc H HNBoc Ph H Me H BocNH H Me X X X X 3 1 1 2 2 方案 6 主要非对映异构体的过渡态模型 Me H N Ph Boc X Me H N Ph Boc X N Me Ph Boc X N Me Ph Boc X H Me Ph Boc X d- d- 1 3 方案 7 试剂和条件 i BuLi THF–HMPA (4 1) 278 8C 1h 则 240 8C 14 h N Me Ph Boc (O)SPh N Me Ph Boc Boc Ph HN + 1a 30% 48% i 1f J. Chem. Soc. Perkin Trans. 1 1997 1519 氮杂-[2,3]Wittig重排已被证明通过在中心乙烯基碳原子掺入某些阴离子稳定的乙烯基取代基来加速.3-苯基硫代丁-3-烯-2-醇 苯基硫基乙烯基硫醚(5ml 0.038 mol)在四氢呋喃(40 ml 1 2 × 10 ml洗涤液)中是通过套管滴加到丁基锂(16.1 ml 2.5 M溶液,己烷溶液,0.040mol,1.05当量)和TMEDA(6.1ml,0.040mol,1.05当量)的四氢呋喃(120ml)的搅拌溶液中,浓度为278 8C。在278 8C下搅拌2小时后,通过套管滴加乙醛溶液(4.2ml,0.077mol 2当量)在四氢呋喃(10ml 1,2×2ml洗涤液)中。完全加入后,将反应在278 8°C下再搅拌一个小时,然后加热至室温。加入饱和氯化铵水溶液(100毫升),分离混合物,并进一步用乙醚(3×70毫升)萃取水层。将合并的有机物用硫酸镁干燥,真空浓缩,得到粗黄色油(9.1 g),用快速柱层析法(15×7 cm二氧化硅20%乙酸乙酯-轻石油)纯化,得到醇4e(4.75g 69%),为黄色油;15 dH(250 MHz;CDCl3) 1.43 (3H d J 6.4 CH3) 1.93 (1H br s OH by D2O 交换) 4.37 (1H qt J 6.4 0.6 CHOH) 4.97 (1H d J 0.9 CHH]] ) 5.50 (1H d J 0.9 CHH]] ) 7.20–7.50 (5H m ArH).化合物 1 的制备 我们之前已经报道了通过 5.6 制备 1 的一般方法 4 (Z)-N-叔丁氧羰基-2-(苯基二甲基硅基)丁-2-烯胺 5c。化合物5c以40%的收率从4c制备为无色油;Nmax(薄膜)/cm21 3356 1703 1505 1366 1249 1171;dH(250 MHz;CDCl3) 0.41 [6H s (CH3)2Si] 1.42 [9H s (CH3)3C] 1.64 (3H dt J 7.0 1.2 CH3CH]] ) 3.77 (2H m NCH2CH]] ) 4.35 (1H br s NH by D2O 交换) 6.31 (1H qt J 7.0 1.2 CH3CH]] ) 7.30–7.55 (5H m ArH);dC(63兆赫;CDCl3) 21.5 17.8 47.9 79.1 127.9 128.9 133.7 134.8 140.5 155.4;m/z (CI1) 306.1880 (13% MH1.C17H28NO2Si 需要 MH1 306.1889) 278 (17) 248 (13 M1 2 But) 234 (47) 172 (100) 135 (16) 57 (But)。(E)-N-叔丁氧羰基-2-苯基丁-2-烯胺 5D.化合物5d以61%的收率从4d制备为无色油;Nmax(薄膜)/cm21 3351 1704 1505 1366 1249 1172 702;dH(250 MHz;CDCl3) 1.40 [9H s (CH3)3C] 1.59 (3H dt J 7.0 1.2 CH3) 3.97 (2H m NCH2CH]] ) 4.55 (1H br s NH by D2O 交换) 5.71 (1H q J 7.0 CH]] ) 7.15–7.40 (5H m ArH);dC(63兆赫;CDCl3) 14.5 28.4 47.4 79.1 123.0 127.0 128.2 128.7 138.3 139.6 155.8;市率(EI1) 247.1575 (3.8% M1.C15H21NO2 需要 M 247.1572) 191 [100 MH1 2 (CH3)3C] 176 (9) 146 (6) 130 (37) 115 (8)。(E)-N-叔丁氧羰基-2-苯硫代丁-2-烯胺 5e.化合物 5e 以 41% 的收率从 4e 制备为黄色固体 mp 52–54 8C(发现 C 64.4;H 7.5;N 4.9;第 11.6 条。C15H21NO2S 需要 C 64.5;H 7.6;N 5.0;S 11.5%);Nmax(薄膜)/cm21 3348 1702 1584 1507 1478 1366 1249 1170;dH(250 MHz;CDCl3) 1.41 [9H s (CH3)3C] 1.90 (3H dt J 6.7, 1520 J. Chem. Soc. Perkin Trans. 1 1997 1.2 CH3) 3.77 (2H d J 5.5 NCH2) 4.77 (1H br s NH by D2O 交换) 6.25 (1H q J 6.7 CH3CH]] ) 7.15–7.30 (5H m ArH);dC(63兆赫;CDCl3) 15.5 28.4 46.4 79.3 126.1 128.9 129.0 130.8 133.6 134.6 155.6;市率 (EI1) 279.1291 (32% M1.C15H21NO2S 需要 M 279.1293) 223 [MH1 2 (CH3)3C 74] 162 (96) 149 (37) 129 (22) 114 (92) 57 (100)。(Z)-N-叔丁氧羰基-N-[2-(苯基二甲基硅基)丁-2-烯基]苄胺 1c.化合物1c以95%的收率从5c制备为无色油;Nmax(薄膜)/cm21 1694 1454 1410 1365 1248 1168 1111;dH(250 MHz;CDCl3) 0.38 [6H s (CH3)2Si] 1.45 [9H s (CH3)3C] 1.67 (3H dt J 7.0 1.5 CH3CH]] ) 3.93 (2H br m NCH2) 4.31 (2H br m NCH2) 6.12 (1H q J 7.0 CH3CH]] ) 7.10–7.55 (10H m ArH);dC(63兆赫;CDCl3) 21.5 17.7 28.4 48.7 51.9 79.6 126.7 127.1 127.6 127.8 128.4 128.8 133.6 138.4 139.0 155.9;市率(EI1) 395.2279 (9% M1.C24H33NO2Si 需要 M 395.2281) 338 [17 M1 2 (CH3)3C] 324 (60) 262 (100) 135 (51) 91 (65)。(E)-N-叔丁氧羰基-N-(2-苯基丁-2-烯基)苄胺 1D.化合物1d以94%的收率从5d制备为淡黄色油(发现C 78.1;H 8.0;N 3.95.C22H27NO2 需要 C 78.3;H 8.1;N 4.15%);Nmax(薄膜)/cm21 1694 1454 1416 1365 1243 1167 1124 879 700;dH(250 MHz;CDCl3) 1.30 [9H s (CH3)3C] 1.55 (3H m CH3) 3.87–4.40 (4H m CH2NCH2) 5.50 (1H m CH]] ) 7.00–7.30 (10H m ArH);dC(63兆赫;CDCl3) 14.4 28.3 48.3 52.6 79.5 123.5 124.0 126.9 127.1 127.4 128.1 128.4 128.8 137.3 138.3 155.7;市率(EI1) 337.2037 (7% M1.C22H27NO2 需要 M 337.30 (1H m CH3CH]] ) 7.00–7.55 (10H m ArH);dC(63兆赫;CDCl3) 14.9 28.3 42.2 50.1 80.1 123.9 127.2 127.7 128.4 129.1 131.7 134.6 138.1 140.6 142.6 155.8;市率 (EI1) 385.1709 (19% M1.C22H27NO3S 需要 M 385.1712) 329 [16 MH1 2 (CH3)3C] 312 [25 M1 2 (CH3)3CO] 284 [15 M1 2 (CH3)3COCO] 268 (47 M1 2 PhSO) 204 (100) 158 (35) 144 (40)。(E)-N-叔丁氧羰基-N-(2-苯磺酰基-2-烯基)-苄胺1g 将Oxone(5.79g 3当量)和水(15ml)的悬浮液分批加入到0 8C下1e(1.16g)的甲醇(25ml)搅拌溶液中。完全加入后,将反应加热至室温并搅拌14小时。真空除去甲醇,残留物在水(15毫升)和二氯甲烷(15毫升)之间分配,分离有机层,水层进一步用二氯甲烷(3×15毫升)萃取。将合并的有机物用硫酸镁干燥,真空浓缩,得到粗黄油,经快速柱色谱法(15×3cm二氧化硅,20%乙酸乙酯-轻质石油)纯化,得到亚砜1g(1.20g,95%),呈粘稠的淡黄绿色油;Nmax(薄膜)/cm21 1694 1447 1410 1366 1305 1247 1159 1137 1083 729 690;dH(250 MHz;CDCl3) 1.40 [9H m (CH3)3C] 2.15 (3H dt J 7.6 1.5 CH3) 4.05 (2H br m NCH2) 4.33 (2H s NCH2) 6.00–6.35 (1H br m CH3CH]] ) 7.05–7.90 (10H m ArH);dC(63兆赫;CDCl3) 14.7 28.4 48.2 49.9 80.6 127.2 127.6 128.7 129.4 133.5 136.8 137.6 138.1 140.6 141.5 155.7;市率 (EI1) 401.1658 (0.3% M1.C22H27NO4S 需要 M 401.1661) 345 [10 MH1 2 (CH3)3C] 300 [37 M1 2 (CH3)3COCO] 204 (59) 150 (38) 144 (31) 106 (90) 91 (100) 77 (24) 57 (85)。(1S*,2R*)-N-叔丁氧羰基-2-甲基-1-苯基-3-(苯基二甲基硅基)丁-3-烯胺3c丁基锂(0.66ml的2.5M己烷溶液1.7 mmol 1.2当量)在278 8C下滴加到搅拌的(Z)-N-叔丁氧羰基-N-[2-(苯基二甲基硅基)丁-2-烯基]-苄胺1c(0.55克,1.4毫摩尔)的四氢呋喃(11毫升)中。在278 8C下搅拌14小时后,通过加入甲醇(0.1ml)淬灭反应并加热至室温。然后将反应混合物分配到饱和碳酸氢钠(20毫升)和乙醚(15毫升)之间,分离有机层,进一步用乙醚(3×15毫升)萃取水层。将合并的有机物用硫酸镁干燥并真空浓缩,得到粘稠的淡黄色油(0.63克),通过快速柱层析(12×2.5厘米二氧化硅,7%乙酸乙酯-轻石油)纯化,得到标题化合物3c,为无色油(0.44克,81%)(发现C,72.4;H 8.6;N 3.8.C24H33NO2Si 要求 C 72.9;H 8.4;N 3.5%);Nmax(薄膜)/cm21 3425 1702 1496 1366 1250 1171 817 734 701;dH[250 MHz;(CD3)2SO] 0.42 [3H s (CH3)Si] 0.47 [3H s (CH3)Si] 0.53 (3H d J 7.0 ]] CCHCH3) 1.15 [9H s (CH3)3C] 2.59 (1H dq J 9.6 7.0 =CCHCH3) 4.47 (1H t J 9.6 NCHPh) 5.42 (1H d J 2.4 HHC]] ) 5.81 (1H d J 2.4 HHC]] ) 6.87 (1H d J 9.6 NH by D2O 交换) 6.95–7.45 (10H m ArH);dC(63兆赫;CDCl3) 22.6 19.7 28.4 42.2 59.3 79.0 127.0 127.1 127.5 128.0 128.2 129.3 134.1 137.9 142.8 152.9 154.9;市率(EI1) 395.2274 (3.7% M1.C24H33NO2Si 需要 M 395.2281) 382 (2) 262 (7) 206 (49) 172 (9) 150 (100) 135 (48) 106 (79) 91 (7) 57 (94)。(1S*,2R*)-N-叔丁氧羰基-2-甲基-1,3-二苯基丁-3-烯胺3d丁基锂(1.64ml 2.5 M溶液的己烷溶液4.1 mmol当量1.2)滴加到(E)-N-叔丁氧羰基-N-(2-苯基丁-2-烯基)苄胺1d(1.15g 3.4 mmol)在四氢呋喃-HMPA(4 1 23 ml)中,温度为278 8C。在278 8°C下搅拌1小时后,将反应缓慢升温至240 8°C并搅拌14小时,然后加入甲醇(0.2ml)淬灭。然后将反应混合物分配在饱和碳酸氢钠(50毫升)和乙醚(30毫升)之间,分离有机层,水层进一步用乙醚(3×30毫升)萃取。将合并的有机物用硫酸镁干燥并在真空中浓缩,得到粘稠的黄色胶(2.3g),通过快速柱色谱法(12×4cm二氧化硅,10%乙酸乙酯-轻石油)纯化,得到淡黄色固体(0.82克,71%的7:1标题化合物3d到次要非对映异构体2d的混合物)。用冰冷的轻质石油研磨,主要的非对映异构体仅为白色粉末(0.在100,8C(油浴温度)下搅拌2小时后,将反应混合物冷却,用乙酸乙酯(10ml)稀释,依次用水(4×10ml)和盐水(10ml)洗涤,用硫酸镁彻底干燥并在真空中浓缩,得到灰白色固体(34mg)。通过快速柱色谱法(15 × 1 cm 二氧化硅 10% 乙酸乙酯-轻石油)纯化,标题化合物 3a 为白色固体 (26 mg 47%).6 致谢 我们将本文献给 S. A. Johnson 先生,他是一位能干的化学家,他被召唤离开了他在地球上的生活。这项工作得到了Zeneca农用化学品公司和谢菲尔德大学的支持。我们还要感谢英国皇家学会和Zeneca(战略研究基金奖)的额外财政支持。参考文献 1 有关最近的综述,请参阅 T. Nakai 和 K. Mikami,Org. React。1994 46 105.2 (a) M. A. Reetz and D. Schinzer, Tetrahedron Lett. 1975, 3485;(b) C.A. Broka and T. Shen, J. Am. Chem. Soc., 1989, 111, 2981;(c) Y. Murata 和 T. Nakai Chem. Lett. 1990, 2069;(d) I. Coldham, J. Chem. Soc. Perkin, Trans. 1, 1993, 1275;(e) R. E. Gawley, Q. Zhang, and S. Campagna, J. Am. Chem. Soc., 1995, 117, 11, 817;( f ) M. Gulea-Purcarescu, E. About-Jaudet, N. Collignon, M. Saquet 和 S. Masson, Tetrahedron 1996, 52, 2075.3 T. Durst, R. V. D. Elzen 和 M. J. Le Belle, J. Am. Chem. Soc. 1972, 94, 9261.4 (a) J. Ahman 和 P. Somfai, J. Am. Chem. Soc., 1994, 116, 9781;(b) I. Coldham, A. J. Collis, R. J. Mould 和 R. E. Rathmell J. Chem. Soc. Perkin, Trans. 1, 1995, 2739.5 J. C. Anderson, D. C. Siddons, S. C. Smith 和 M. E. Swarbrick, J. Chem. Soc. Chem. Commun.1995 1835.6 J. C. Anderson, D. C. Siddons, S. C. Smith 和 M. E. Swarbrick, J. Org. Chem., 1996, 61, 4820.7 P. v. R. Schleyer, T.Clark, A. J. Kos, G. W. Spitznagel, C. Rohde, D., Arad, K. N. Houk, and N. G. Rondan, J. Am. Chem. Soc., 1984, 106, 6467.8 在这里,我们类比了氧-[2,3] Wittig重排的计算过渡态。Y.-D., Wu, K. N. Houk 和 J. A. Marshall, J. Org. Chem., 1990, 55, 1421.另见K. Mikami, T. Uchida, T. Hirano, Y.-D.Wu 和 K. N.Houk 四面体 1994, 50, 5917.9 J. C. Anderson、M. E. Swarbrick 和 C. A. Roberts,未发表的结果。10 I. Fleming, J. Dunoduès 和 R. Smithers, Org. React.1989 37 57.11 H. Oda, M. Sato, Y. Morizawa, K. Oshima and H. Nozaki, Tetrahedron, 1985, 41, 3257.12 A. G. Brook、J. M. Duff 和 D. G. Anderson,Can. J. Chem. 1970,48:561。13 L. E. Overman, J. Am. Chem. Soc., 1976, 98, 2901.14 K. Burgess 和 L. D. Jennings, J. Am. Chem. Soc. 1991, 113, 6129.15 K. Takaki、M.Okada、M. Yamada 和 K. Negoro, J. Org. Chem. 1982, 47, 1200.论文 6/08226B 收稿日期:1996 年 12 月 5 日 接受日期:1997 年 1 月 21 日 J. Chem. Soc. Perkin Trans. 1 1997 1517 非对映选择性无环氮杂-[2,3] Wittig sigmatropic 重排 James C. Anderson,*,†,a Stephen C. Smith b and Martin E.在苯基二甲基硅烷衍生物4c的情况下,我们必须根据文献中对三苯同系物的描述开发(1-溴乙烯基)-苯基二甲基硅烷的可靠合成.12将溴添加到苯基二甲基乙烯基硅烷中,然后用回流吡啶消除溴化氢,以62%的收率产生所需的卤化物。然后通过已建立的将仲烯丙醇转化为烯丙基酰胺5c-e的立体选择性转化程序将烯丙醇4c-e转化为所需的重排前体1c-e(方案3).13化合物1f和1g是从1e的受控氧化中获得的。通过在278 8C的四氢呋喃(THF)中用BuLi处理14小时进行1c的重排,使重排产物3c的收率为81%,具有完全非对映选择性(方案4)。这种非对映异构体在其核磁共振谱图中表现出特征性的化学变化,我们用它来分配三甲基硅烷基类似物(表1).6 用1518 J. Chem. Soc. Perkin Trans.1 1997 TBAF在DMSO中处理,在标准文献条件下11产生了脱硅烷化产物的单个非对映异构体,收率为47%。该化合物具有与从我们的第一次重排中获得的次要非对映异构体 3a(方案 3)相同的 NMR 谱图,其结构已通过与真正的异亮氨酸的相关性得到证明.5 在 278 8C 和 240 8C 下用 BuLi 在 278 8C 和 240 8C 下处理 1d 和 3d 14 小时,导致 2d 和 3d 的混合物,收率为 71%,di

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号