首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Sequential Vapor Infiltration of Metal Oxides into Sacrificial Polyester Fibers: Shape Replication and Controlled Porosity of Microporous/Mesoporous Oxide Monoliths
【24h】

Sequential Vapor Infiltration of Metal Oxides into Sacrificial Polyester Fibers: Shape Replication and Controlled Porosity of Microporous/Mesoporous Oxide Monoliths

机译:金属氧化物在牺牲聚酯纤维中的顺序蒸气渗透:微孔/介孔氧化物整体的形状复制和可控孔隙率

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The preparation of microporous and mesoporous metal oxide materials continues to attract considerable attention, because of their possible use in chemical separations, catalyst support, chemical sensors, optical and electronic devices, energy storage, and solar cells. While many methods are known for the synthesis of porous materials, researchers continue to seek new methods to control pore size distribution and macroscale morphology. In this work, we show that sequential vapor infiltration (SVI) can yield shape-controlled micro/mesoporous materials with tunable pore size, using polyesters as a sacrificial template. The reaction proceeds by exposing polymer fiber templates to a controlled sequence of metal organic and co-reactant vapor exposure cycles in an atomic layer deposition (ALD) reactor. The precursors infuse sequentially and thereby distribute and react uniformly within the polymer, to yield an organic—inorganic hybrid material that retains the physical dimensions of the original polymer template. Subsequent calcination in air results in an inorganic microporous/mesoporous material that again retains the macroscopic physical shape of the starting polymer matrix. The microporous/mesoporous structure is confirmed by microscopy and nitrogen adsorption/ desorption analysis, and the resulting pore size is controlled by the size of the starting polymer repeat unit and by the kinetics of the infiltration/annealing process steps. In situ infrared transmission and quartz crystal microbalance results confirm the chemical reaction mechanisms. The chemical transformation that occurs during SVI could be important for a range of applications that utilize well-defined porous nanostructures.
机译:微孔和介孔金属氧化物材料的制备继续受到相当大的关注,因为它们可能用于化学分离、催化剂载体、化学传感器、光学和电子设备、储能和太阳能电池。虽然许多方法都用于合成多孔材料,但研究人员仍在继续寻找控制孔径分布和宏观形态的新方法。在这项工作中,我们表明,使用聚酯作为牺牲模板,顺序蒸汽渗透 (SVI) 可以产生具有可调孔径的形状控制微孔/介孔材料。该反应通过将聚合物纤维模板暴露于原子层沉积 (ALD) 反应器中受控的金属有机物和共反应物蒸气暴露循环序列中进行。前驱体依次注入,从而在聚合物内均匀分布和反应,产生有机-无机杂化材料,保持原始聚合物模板的物理尺寸。随后在空气中煅烧产生无机微孔/介孔材料,该材料再次保留了起始聚合物基体的宏观物理形状。通过显微镜和氮吸附/脱附分析确认了微孔/介孔结构,所得孔径由起始聚合物重复单元的大小和渗透/退火工艺步骤的动力学控制。原位红外透射和石英晶体微天平结果证实了其化学反应机理。SVI过程中发生的化学转化对于利用明确定义的多孔纳米结构的一系列应用可能很重要。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号