...
【24h】

Dynamics of learning-induced cellular modifications in the cortex

机译:Dynamics of learning-induced cellular modifications in the cortex

获取原文
获取原文并翻译 | 示例
           

摘要

This aim of this review is to describe the dynamics of learning-induced cellular modifications in the rat piriform ( olfactory) cortex after olfactory discrimination learning and to describe their functional significance to long-term memory consolidation. The first change to occur is in the intrinsic properties of the neurons. One day after learning, pyramidal neurons show enhanced neuronal excitability. This enhancement results from reduction in calcium-dependent conductance that mediates the post burst after-hyperpolarization. Such enhanced excitability lasts for 3 days and is followed by a series of synaptic modifications.Several forms of long-term enhancement in synaptic connections between layer II pyramidal neurons in the piriform cortex accompany olfactory learning. Enhanced synaptic release is indicated by reduced paired-pulse facilitation. Postsynaptic enhancement of synaptic transmission is indicated by reduced rise time of post-synaptic potentials and formation of new synaptic connections is indicated by increased spine density along dendrites of these neurons. Such modifications last for up to 5 days.Thus, olfactory discrimination rule learning is accompanied by a series of cellular modifications which occur and then disappear at different times. These modifications overlap partially, allowing the maintenance of the cortical system in a 'learning mode' in which memories for specific odors can be acquired rapidly and efficiently.
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号