首页> 外文期刊>Biochimie >Cilomilast enhances osteoblast differentiation of mesenchymal stem cells and bone formation induced by bone morphogenetic protein 2
【24h】

Cilomilast enhances osteoblast differentiation of mesenchymal stem cells and bone formation induced by bone morphogenetic protein 2

机译:Cilomilast enhances osteoblast differentiation of mesenchymal stem cells and bone formation induced by bone morphogenetic protein 2

获取原文
获取原文并翻译 | 示例
       

摘要

A rapid and efficient method to stimulate bone regeneration would be useful in orthopaedic stem cell therapies. Rolipram is an inhibitor of phosphodiesterase 4 (PDE4), which mediates cyclic adenosine monophosphate (cAMP) degradation. Systemic injection of rolipram enhances osteogenesis induced by bone morphogenetic protein 2 (BMP-2) in mice. However, there is little data on the precise mechanism, by which the PDE4 inhibitor regulates osteoblast gene expression. In this study, we investigated the combined ability of BMP-2 and cilomilast, a second-generation PDE4 inhibitor, to enhance the osteoblastic differentiation of mesenchymal stem cells (MSCs). The alkaline phosphatase (ALP) activity of MSCs treated with PDE4 inhibitor (cilomilast or rolipram), BMP-2, and/or H89 was compared with the ALP activity of MSCs differentiated only by osteogenic medium (OM). Moreover, expression of Runx2, osterix, and osteocalcin was quantified using real-time polymerase chain reaction (RT-PCR). It was found that cilomilast enhances the osteoblastic differentiation of MSCs equally well as rolipram in primary cultured MSCs. Moreover, according to the H89 inhibition experiments, Smad pathway was found to be an important signal transduction pathway in mediating the osteogenic effect of BMP-2, and this effect is intensified by an increase in cAMP levels induced by PDE4 inhibitor. (C) 2012 Elsevier Masson SAS. All rights reserved.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号