...
首页> 外文期刊>Analytical and bioanalytical chemistry >Epitope-targeted proteome analysis: towards a large-scale automated protein-protein-interaction mapping utilizing synthetic peptide arrays
【24h】

Epitope-targeted proteome analysis: towards a large-scale automated protein-protein-interaction mapping utilizing synthetic peptide arrays

机译:Epitope-targeted proteome analysis: towards a large-scale automated protein-protein-interaction mapping utilizing synthetic peptide arrays

获取原文
获取原文并翻译 | 示例
           

摘要

We describe the development of a process for the genome-wide mapping of interactions between protein domains and peptide ligands entirely based on high-throughput biochip technologies. A phage library displaying protein domains from a randomly fragmented and cloned cDNA library will be "panned" on an array of synthetic peptide ligands. After multiplexed affinity enrichment, peptide-specific phage populations will be automatically eluted, propagated, labelled and identified by hybridisation to a DNA microarray. Peptide arrays are synthesized in situ by SPOT synthesis on a planar substrate. By utilizing a commercially available library of human brain cDNA plus a set of distinct model domains cloned into T7-phage, we could show that a single panning round on an array of known peptide ligands for these model domains synthesized on a cellulose membrane can yield an enrichment of better than a factor of 1,000. This is sufficient to detect peptide-specific enrichment of Cy3(post-panning) against Cy5(pre-panning)-labelled phage DNA inserts on a cDNA microarray. Thus, the proof-of-principle of our approach could be successfully demonstrated and first interaction data are being collected.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号