...
首页> 外文期刊>Journal of geophysical research >Mechanism of cyanoacetylene photochemistry at 185 and 254 nm
【24h】

Mechanism of cyanoacetylene photochemistry at 185 and 254 nm

机译:Mechanism of cyanoacetylene photochemistry at 185 and 254 nm

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The role of cyanoacetylene (HC3N) in the atmospheric photochemistry of Titan and its relevance to polymer formation are discussed. Investigation of the relative light absorption of HC3N, acetylene (C2H2), and diacetylene (C4H2) revealed that HC3N is an important absorber of UV light in the 205- to 225-nm wavelength region in Titan's polar regions. Laboratory studies established that photolysis of C2H2 initiates the polymerization of HC3N even though the HC3N is not absorbing the UV light. Quantum yield measurements establish that HC3N is 2-5 times as reactive as C2H2 for polymer formation. Photolysis of HC3N with 185-nm light in the presence of N-2, H-2, Ar, or CF4 results in a decrease in the yield of 1,3,5-tricyanobenzene (1,3,5-tcb), while photolysis in the presence of CH4, C2H6, or n-C4H10 results in an increase in 1,3,5-tcb. The rate of loss of HC3N is increased by all gases except H-2, where it is unchanged. It was not possible to detect 1,3,5-tcb as a photoproduct when the partial pressure of HC3N was decreased to 1 torr. Photolysis of HC3N with 254-nm light in the presence of H-2 or N-2 results in the formation of 1,2,4-tcb, while photolysis in the presence of CH4, C2H6, or n-C4H10 results in the formation of increasing amounts of 1,3,5-tcb. Mechanisms for the formation of polymers are presented.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号