...
首页> 外文期刊>Journal of Hydrology >Optimizing GRACE/GRACE-FO data and a priori hydrological knowledge for improved global terrestial water storage component estimates
【24h】

Optimizing GRACE/GRACE-FO data and a priori hydrological knowledge for improved global terrestial water storage component estimates

机译:优化 GRACE/GRACE-FO 数据和先验水文知识,以改进全球陆地储水量估算

获取原文
获取原文并翻译 | 示例

摘要

The comprehensive information of global terrestrial water storage (TWS) components (soil moisture, groundwater, snow, surface water) is essential for effective assessment of water resource availability, climate variation, and disaster mitigation measures. Observational data provided by the Gravity Recovery And Climate Experiment (GRACE) and GRACE Follow-On satellite missions offer global TWS variation (ΔTWS) in terms of an integrated water column. However, GRACE spatial resolution is relatively coarse (i.e., 3°), and the vertically integrated value cannot be separated into ΔTWS components directly. This study demonstrates the feasibility to estimate ΔTWS components at any desired spatial-vertical resolution by effectively maintaining the native resolution of the employed hydrological knowledge. It utilizes a least-squares with constraints (LSC) approach to rigorously incorporate GRACE and GRACE-FO data and a priori hydrological knowledge, with the aim to improve global ΔTWS components' accuracy and spatial resolution. The 3°×3° GRACE mascon derived ΔTWS data is disaggregated into the 0.5°×0.5° anomalous soil moisture storage (ΔSMS), groundwater storage (ΔGWS), snow water equivalent (ΔSWE), and surface water storage (ΔSWS) based on the covariance information obtained from the Community Atmosphere Biosphere Land Exchange (CABLE) and the PCRaster Global Water Balance (PCRGLOBWB) models. Evaluation with different ground measurements and satellite products between 2002 and 2019 exhibits significantly improved accuracy in all individual ΔTWS components. This improvement is of particular note in ΔGWS and ΔSWS, where the LSC approach increases the globally averaged correlation values by approximately 0.13 and 0.05, respectively. Reliable prior knowledge leads to a more accurate ΔTWS component estimate, and the use of ensemble-mean knowledge yields the best result.
机译:全球陆地储水(TWS)组成部分(土壤水分、地下水、雪、地表水)的综合信息对于有效评估水资源可用性、气候变化和减灾措施至关重要。重力恢复和气候实验(GRACE)和GRACE后续卫星任务提供的观测数据提供了综合水柱方面的全球TWS变化(ΔTWS)。然而,GRACE空间分辨率相对较粗(即3°),垂直积分值不能直接分离为ΔTWS分量。本研究证明了通过有效保持所用水文知识的原生分辨率,在任何所需的空间垂直分辨率下估计 ΔTWS 分量的可行性。它利用有约束的最小二乘法(LSC)方法,将GRACE和GRACE-FO数据以及先验水文知识严格结合起来,旨在提高全球ΔTWS分量的精度和空间分辨率。基于社区大气生物圈土地交换(CABLE)和PCRaster全球水平衡(PCRGLOBWB)模型的协方差信息,将3°×3° GRACE马斯康衍生的ΔTWS数据分解为0.5°×0.5°异常土壤储水量(ΔSMS)、地下水储量(ΔGWS)、雪水当量(ΔSWE)和地表水储量(ΔSWS)。在2002年至2019年期间,对不同地面测量和卫星产品的评估表明,所有单独的ΔTWS组件的精度都得到了显着提高。这种改进在 ΔGWS 和 ΔSWS 中尤为明显,其中 LSC 方法将全局平均相关值分别增加了约 0.13 和 0.05。可靠的先验知识可以带来更准确的 ΔTWS 分量估计,并且使用集成均值知识会产生最佳结果。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号