首页> 外文期刊>Journal of geophysical research >Constraining Suprathermal Electron Evolution in a Parker Spiral Field With Cassini Observations
【24h】

Constraining Suprathermal Electron Evolution in a Parker Spiral Field With Cassini Observations

机译:Constraining Suprathermal Electron Evolution in a Parker Spiral Field With Cassini Observations

获取原文
获取原文并翻译 | 示例
           

摘要

Suprathermal electrons in the solar wind consist of the "halo," present at all pitch angles, and the "strahl" which is a field-aligned, beam-like population. Examining the heliospheric evolution of strahl beams is key to understanding the in-transit processing of solar wind suprathermal electrons, in particular, to identify electron scattering mechanisms and to establish the origin of the halo population. Not only does this have significant implications with regard to the kinetic processes occurring within the solar wind but also its thermodynamic evolution, as the suprathermal electrons carry the majority of the solar wind heat flux. In this investigation, an established model for suprathermal electron evolution in a Parker spiral interplanetary magnetic field is adapted from its original use. The model is constrained using solar wind strahl observed by the Cassini mission on its interplanetary journey to Saturn. The effects of large scale IMF geometry due to different solar wind velocities and application of different electron scattering factors are examined. It is found that slow solar wind speeds provide the closest match to the strahl width observations, both in terms of radial distance and electron energy trends, and that predominantly slower solar wind speeds were therefore likely observed by the Cassini mission en-route to Saturn. It is necessary to include a strahl scattering factor which increases with electron energy in order to match observations, indicating that the strahl scattering mechanism must have an inherent energy dependence.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号