...
首页> 外文期刊>Journal of geophysical research >Future Winter Precipitation Decreases Associated With the North Atlantic Warming Hole and Reduced Convection
【24h】

Future Winter Precipitation Decreases Associated With the North Atlantic Warming Hole and Reduced Convection

机译:Future Winter Precipitation Decreases Associated With the North Atlantic Warming Hole and Reduced Convection

获取原文
获取原文并翻译 | 示例
           

摘要

Climate projections in the North Atlantic region suffer from great uncertainties, and projections of precipitation are given with a large spread. Some of this uncertainty is related to projections of the North Atlantic warming hole (NAWH). The Community Earth System Model version 2 (CESM2) projects a relatively strong and extensive NAWH, with future sea surface cooling extending to Northern Scandinavia. This study investigates the relatively large winter precipitation decrease projected by CESM2 in the northeastern North Atlantic region, reinforced in a regional model. Three future scenarios from CESM2 are dynamically downscaled with the Weather Research and Forecast model. A methodology to separate convective and orographic from stratiform precipitation is applied to explore the physical mechanisms. Changes in stratiform precipitation closely relate to storm-track changes, which varies between the scenarios. Convective precipitation decreases by up to 50 over the Norwegian Sea at the end of the century, which is robust across the scenarios. This is explained by the underlying reduced sea surface temperatures of the NAWH, leading to reduced evaporation and reduced convective activity and intensity. The orographic precipitation maximum over the Scandinavian mountains is shifted upstream, likely affected by increased static stability and flow blocking, which also relates to the NAWH. This shift is possibly also explained by more frequent rain versus snow, as well as reduced cross-barrier wind speeds. This study contributes to highlight the importance of focusing future research efforts on the NAWH, in order to constrain future climate projections in this region.
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号