首页> 外文期刊>The Journal of Chemical Physics >Computational and experimental studies on band alignment of ZnO/InxGa2-xO3/GaN heterojunctions
【24h】

Computational and experimental studies on band alignment of ZnO/InxGa2-xO3/GaN heterojunctions

机译:Computational and experimental studies on band alignment of ZnO/InxGa2-xO3/GaN heterojunctions

获取原文
获取原文并翻译 | 示例
           

摘要

The ZnO/GaN heterojunctions are extensively investigated now, owing to their good luminescent properties and devisable capability to form efficient hybrid structures. An electron-blocking layer inserted into heterojunctions can greatly change their properties. In this work, n-ZnO/beta-InxGa(2-x)O(3)/p-GaN heterojunctions have been successfully formed using atomic layer deposition methods. We show that the doping of In can effectively tune the band edges of the heterojunctions. First-principle calculations reveal that the bandgap of bulk beta-InxGa(2-x)O(3) shrinks linearly with the increase in In contents, accompanied by an upward movement of the valence band maximum and a downward movement of the conduction band minimum. As the indium concentrations increase, the valence band offsets show an upward movement at both the InxGa(2-x)O(3)/GaN and ZnO/InxGa(2-x)O(3) interfaces, while the conduction band offsets present different trends. A broad, reddish yellow-green emission appears after In doping, which verifies the effect of band alignment. What is more, we show that the amorphization of InxGa(2-x)O(3) can play an important role in tuning the band edge. This work provides access to a series of band offsets tunable heterojunctions and can be used for the further design of direct white light-emitting diodes without any phosphors, based on this structure.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号