...
首页> 外文期刊>Journal of Materials Science >Thermal decomposition mechanisms and stability of NTO crystal involving molecular vacancy and surface effects: DFTB-MD and DFT studies
【24h】

Thermal decomposition mechanisms and stability of NTO crystal involving molecular vacancy and surface effects: DFTB-MD and DFT studies

机译:Thermal decomposition mechanisms and stability of NTO crystal involving molecular vacancy and surface effects: DFTB-MD and DFT studies

获取原文
获取原文并翻译 | 示例

摘要

Abstract 3-Nitro-1,2,4-triazole-5-one (NTO) is a potential alternative to TNT, RDX and HMX in high energy density materials (HEDMs) due to its inexpensive synthesis, excellent detonation performance, low impact sensitivity, and high thermal stability, but its underlying thermal decomposition mechanism is ambiguous. In this work, we carry out molecular dynamics simulations based on self-consistent charge density functional tight binding method to study the thermal decomposition mechanism of condensed phase NTO and consider surface and molecular vacancy effects. We observe that the initial decomposition reaction is mainly the rupture of intramolecular chemical bonds, and three primary reaction channels are proposed: cleavage of nitro group (C5 − N5 bond fracture), rupture of C3 − N2 bond in the ring and H atom transfer to carbonyl, in which C5 − N5 bond breaking plays a leading role under high temperature. At molecular vacancy and on surface, we find that the activation barriers of nitro group cleavage and H atoms migration are lower than that in ideal bulk NTO, indicating effective regulations of them on the thermal stability and decomposition reaction kinetics of NTO crystal. The above proposed reaction mechanism and the effects of molecular vacancy and surface are verified from electronic structure calculations and TG-DSC experiment with coarse and fine NTO samples. Our work may shed some light on designing HEDMs with better performance, safety and usability.Graphical abstract

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号