...
首页> 外文期刊>plos computational biology >Modelling novelty detection in the thalamocortical loop
【24h】

Modelling novelty detection in the thalamocortical loop

机译:Modelling novelty detection in the thalamocortical loop

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In complex natural environments, sensory systems are constantly exposed to a large stream of inputs. Novel or rare stimuli, which are often associated with behaviorally important events, are typically processed differently than the steady sensory background, which has less relevance. Neural signatures of such differential processing, commonly referred to as novelty detection, have been identified on the level of EEG recordings as mismatch negativity (MMN) and on the level of single neurons as stimulus-specific adaptation (SSA). Here, we propose a multi-scale recurrent network with synaptic depression to explain how novelty detection can arise in the whisker-related part of the somatosensory thalamocortical loop. The "minimalistic" architecture and dynamics of the model presume that neurons in cortical layer 6 adapt, via synaptic depression, specifically to a frequently presented stimulus, resulting in reduced population activity in the corresponding cortical column when compared with the population activity evoked by a rare stimulus. This difference in population activity is then projected from the cortex to the thalamus and amplified through the interaction between neurons of the primary and reticular nuclei of the thalamus, resulting in rhythmic oscillations. These differentially activated thalamic oscillations are forwarded to cortical layer 4 as a late secondary response that is specific to rare stimuli that violate a particular stimulus pattern. Model results show a strong analogy between this late single neuron activity and EEG-based mismatch negativity in terms of their common sensitivity to presentation context and timescales of response latency, as observed experimentally. Our results indicate that adaptation in L6 can establish the thalamocortical dynamics that produce signatures of SSA and MMN and suggest a mechanistic model of novelty detection that could generalize to other sensory modalities. Author summaryCortical sensory neurons have been shown to be capable of novelty detection, that is they respond more vigorously when a novel, unexpected stimulus is presented, and less so when the stimulus is part of a predictable sequence. However, the neural mechanism underlying this capability is not yet fully understood. Here, we developed a minimalistic thalamocortical network model that accounts for novelty detection and reproduces physiologically observed neural response patterns in the anaesthetized somatosensory cortex. Specifically, our results demonstrate that the novelty signal arises from the recurrent interplay between thalamic neurons and cortical neurons in layers 4 and 6, without the need of other components. This work therefore provides a concrete mechanism that can serve as a starting point for further investigating the neural circuit mechanisms underlying novelty detection.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号