...
首页> 外文期刊>Journal of Composite Materials >Self-consistent homogenization-based parametrically upscaled continuum damage mechanics model for composites subjected to high strain-rate loading
【24h】

Self-consistent homogenization-based parametrically upscaled continuum damage mechanics model for composites subjected to high strain-rate loading

机译:基于自洽均质化的高应变率载荷复合材料连续损伤力学模型

获取原文
获取原文并翻译 | 示例

摘要

This paper develops a Parametrically Upscaled Continuum Damage Mechanics (PUCDM) model for carbon fiber/epoxy matrix composites subjected to high strain-rate loading. The PUCDM model for predicting high strain-rate induced deformation and damage evolution at the macroscopic scale, explicitly incorporates microstructural morphology and micro-inertia in its constitutive coefficients. It is developed using self-consistent homogenization that uses a concurrent multiscale model to account for the effect of micro-inertia and stress wave interaction with the microstructure. The concurrent model embeds a statistically equivalent representative volume element (SERVE) of the microstructure in an exterior domain, whose constitutive and damage response are described by the PUCDM model. Micromechanical modeling for the composite microstructure involves a unified cohesive zone enhanced phase-field damage model for fiber-matrix interface debonding, fiber breakage, and matrix cracking. The PUCDM model parameters for the upscaled domain are determined through micro-macro-scale energy equivalence, along with traction reciprocity and displacement continuity at the SERVE-exterior domain interface that are enforced using a Lagrange multiplier-based approach. Simulations using the concurrent model analyze stress wave propagation and damage evolution in composite microstructures with three different fiber volume fractions at multiple strain rates in the range of 10~(2)− 10~(5) s ~(−1). The fiber volume fraction and spatial distributions affect the overall stiffness and damage evolution in the PUCDM model. Results of the analysis demonstrate the need for representation of micro-inertia, strain rates and microstructure morphology in the PUCDM-based stiffness and damage model parameters for high strain-rates above ∼ 10 4 s − 1 .
机译:该文建立了高应变率载荷下碳纤维/环氧基复合材料的参数化放大连续介质损伤力学(PUCDM)模型。PUCDM模型用于在宏观尺度上预测高应变率诱导的变形和损伤演化,其本构系数明确地将微观结构形态和微观惯性纳入其中。它是使用自洽均质化开发的,该均质化使用并发多尺度模型来解释微惯性和应力波与微观结构相互作用的影响。并发模型在外部域中嵌入了微观结构的统计等效代表性体积单元 (SERVE),其本构和损伤响应由 PUCDM 模型描述。复合材料微观结构的微观力学建模涉及针对纤维-基体界面解键、纤维断裂和基体开裂的统一内聚区增强相场损伤模型。升级域的 PUCDM 模型参数是通过微观-宏观尺度的能量当量以及使用基于拉格朗日乘子的方法强制执行的 SERVE-外部域接口处的牵引力互易性和位移连续性来确定的。采用并行模型的仿真分析了在10~(2)− 10~(5) s ~(−1)范围内多种应变速率下,具有三种不同纤维体积分数的复合材料微结构中的应力波传播和损伤演化。纤维体积分数和空间分布影响PUCDM模型的整体刚度和损伤演化。分析结果表明,对于∼ 10 4 s − 1以上的高应变率,需要在基于PUCDM的刚度和损伤模型参数中表示微惯性、应变率和微观结构形态。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号