首页> 外文期刊>Electric Power Systems Research >Decentralized safe reinforcement learning for inverter-based voltage control
【24h】

Decentralized safe reinforcement learning for inverter-based voltage control

机译:Decentralized safe reinforcement learning for inverter-based voltage control

获取原文
获取原文并翻译 | 示例
           

摘要

? 2022 Elsevier B.V.Inverter-based distributed energy resources provide the possibility for fast time-scale voltage control by quickly adjusting their reactive power. The power-electronic interfaces allow these resources to realize almost arbitrary control law, but designing these decentralized controllers is nontrivial. Reinforcement learning (RL) approaches are becoming increasingly popular to search for policy parameterized by neural networks. It is difficult, however, to enforce that the learned controllers are safe, in the sense that they may introduce instabilities into the system. This paper proposes a safe learning approach for voltage control. We prove that the system is guaranteed to be exponentially stable if each controller satisfies certain Lipschitz constraints. The set of Lipschitz bound is optimized to enlarge the search space for neural network controllers. We explicitly engineer the structure of neural network controllers such that they satisfy the Lipschitz constraints by design. A decentralized RL framework is constructed to train local neural network controller at each bus in a model-free setting.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号