...
首页> 外文期刊>Physical and Engineering Sciences in Medicine >Natural polymer-based hydrogels as prospective tissue equivalent materials for radiation therapy and dosimetry
【24h】

Natural polymer-based hydrogels as prospective tissue equivalent materials for radiation therapy and dosimetry

机译:Natural polymer-based hydrogels as prospective tissue equivalent materials for radiation therapy and dosimetry

获取原文
获取原文并翻译 | 示例
           

摘要

Natural polymer-based hydrogels have been extensively employed in tissue engineering and biomedical applications, owing to their biodegradability and biocompatibility. In the present work, we have investigated the efficacy of hydrogels such as agarose, hyaluronan, gelatin, carrageenan, chitosan, sodium alginate and collagen as tissue equivalent materials with respect to photon and charged particle (electron, proton and alpha particle) interactions, for use in radiation therapy and dosimetry. Tissue equivalence has been investigated by computing photon mass energy absorption coefficient (mu(en)/rho), kinetic energy released per unit mass (KERMA), equivalent atomic number (Z(eq)) and energy absorption build-up factors (EABF) relative to human tissues (soft tissue, cortical bone, skeletal muscle, breast tissue, lung tissue, adipose tissue, skin tissue, brain) in the energy range of 0.015-15 MeV. Ratio of effective atomic numbers (Z(eff)) have been examined for tissue-equivalence in the energy range of 10 keV-1 GeV for charged particle interactions. Analysis using standard theoretical formulations revealed that all the selected natural polymers can serve as good tissue equivalent materials with respect to all human tissues except cortical bone. Notably, sodium alginate, collagen and hyaluronan are found to have radiation interaction characteristics close to that of human tissues. These results would be useful in deciding on the suitability of a natural polymer hydrogel as tissue substitute in the desired energy range.
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号