首页> 外文期刊>International journal of hydrogen energy >A study on solid oxide electrolyzer stack and system performance based on alternative mapping models
【24h】

A study on solid oxide electrolyzer stack and system performance based on alternative mapping models

机译:基于替代映射模型的固体氧化物电解槽电堆及系统性能研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In this study, a solid oxide electrolyzer cell (SOEC) stack model is developed based on an alternative mapping concept. The SOEC stack performance in a commercial hot box is systematically studied under different operating currents, flow rates, and flow directions. The results revealed that the SOEC stack operated in a hot box has thoroughly different temperature distributions, resulting in additional efficiency losses and an increase in thermal neutral voltage. The SOEC stack model computation results are summarized into stack performance diagrams and used in the system design. A 6-Nm(3)/h SOEC system with preheaters and recycling cathode materials is designed, and its performance is studied. The system efficiency is greatly influenced by the steam generator, and an external steam source can help increase the total efficiency of the system to more than 83. Even the current increase may deteriorate the stack performance. It can increase the SOEC system efficiency by saving energy in the steam generator and preheaters. An increase in the flow rate around anode and cathode can improve the system capacity and efficiency. The sys-tem's maximum capacity is limited by the preheater heat balance and the stack output temperature. The feasible maximum system capacity is 33.4 kW electrolysis electric power input and 9.93 Nm(3)/h hydrogen production rate. At a constant system capacity, decreasing the air flow rate can minimize the heat losses in anode off-gas and achieve more than 87 nonsteam system efficiency. (C) nbsp;2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:本研究基于替代映射概念开发了一种固体氧化物电解槽(SOEC)堆栈模型。系统地研究了不同工作电流、流速和流向下商用热箱中的SOEC电堆性能。结果表明,在热箱中运行的SOEC堆具有完全不同的温度分布,导致额外的效率损失和热中性电压的增加。将SOEC堆栈模型计算结果汇总到堆栈性能图中,并用于系统设计。设计了一种6 Nm(3)/h的预热器和回收正极材料的SOEC系统,并对其性能进行了研究。系统效率受蒸汽发生器的影响很大,外部蒸汽源有助于将系统的总效率提高到83%以上。即使当前增加也可能使堆栈性能恶化。它可以通过节省蒸汽发生器和预热器的能量来提高SOEC系统效率。增加阳极和阴极周围的流速可以提高系统容量和效率。系统的最大容量受预热器热平衡和电堆输出温度的限制。可行的最大系统容量为 33.4 kW 电解电力输入和 9.93 Nm(3)/h 制氢速率。在恒定的系统容量下,降低空气流速可以最大限度地减少阳极废气中的热损失,并实现超过 87% 的非蒸汽系统效率。(C) 2022 Hydrogen Energy Publications LLC. 由 Elsevier Ltd. 出版保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号