首页> 外文期刊>Computational Mechanics: Solids, Fluids, Fracture Transport Phenomena and Variational Methods >A thermodynamics-informed active learning approach to perception and reasoning about fluids
【24h】

A thermodynamics-informed active learning approach to perception and reasoning about fluids

机译:一种基于热力学的主动学习方法,用于对流体的感知和推理

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Learning and reasoning about physical phenomena is still a challenge in robotics development, and computational sciences play a capital role in the search for accurate methods able to provide explanations for past events and rigorous forecasts of future situations. We propose a thermodynamics-informed active learning strategy for fluid perception and reasoning from observations. As a model problem, we take the sloshing phenomena of different fluids contained in a glass. Starting from full-field and high-resolution synthetic data for a particular fluid, we develop a method for the tracking (perception) and simulation (reasoning) of any previously unseen liquid whose free surface is observed with a commodity camera. This approach demonstrates the importance of physics and knowledge not only in data-driven (gray-box) modeling but also in real-physics adaptation in low-data regimes and partial observations of the dynamics. The presented method is extensible to other domains such as the development of cognitive digital twins able to learn from observation of phenomena for which they have not been trained explicitly.
机译:对物理现象的学习和推理仍然是机器人技术发展中的一项挑战,计算科学在寻找能够解释过去事件和严格预测未来情况的准确方法方面发挥着重要作用。我们提出了一种基于热力学的主动学习策略,用于流体感知和观察推理。作为模型问题,我们采用玻璃杯中不同流体的晃动现象。从特定流体的全场和高分辨率合成数据开始,我们开发了一种方法,用于跟踪(感知)和模拟(推理)任何以前看不见的液体,这些液体的自由表面是用商用相机观察的。这种方法不仅证明了物理学和知识在数据驱动(灰盒)建模中的重要性,而且在低数据状态下的真实物理适应和部分动力学观察中也很重要。所提出的方法可扩展到其他领域,例如认知数字孪生的开发,能够从对尚未明确训练的现象的观察中学习。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号