...
首页> 外文期刊>Biological psychiatry >Driven by Pain, Not Gain: Computational Approaches to Aversion-Related Decision Making in Psychiatry
【24h】

Driven by Pain, Not Gain: Computational Approaches to Aversion-Related Decision Making in Psychiatry

机译:Driven by Pain, Not Gain: Computational Approaches to Aversion-Related Decision Making in Psychiatry

获取原文
获取原文并翻译 | 示例

摘要

? 2019 Society of Biological PsychiatryAlthough it is well known that “losses loom larger than gains,” computational approaches to aversion-related decision making (ARDM) for psychiatric disorders is an underdeveloped area. Computational models of ARDM have been implemented primarily as state-dependent reinforcement learning models with bias parameters to quantify Pavlovian associations, and differential learning rates to quantify instrumental updating have been shown to depend on context, involve complex cost calculations, and include the consideration of counterfactual outcomes. Little is known about how individual differences influence these models relevant to anxiety-related conditions or addiction-related dysfunction. It is argued that model parameters reflecting 1) Pavlovian biases in the context of reinforcement learning or 2) hyperprecise prior beliefs in the context of active inference play an important role in the emergence of dysfunctional avoidance behaviors. The neural implementation of ARDM includes brain areas that are important for valuation (ventromedial prefrontal cortex) and positive reinforcement–related prediction errors (ventral striatum), but also aversive processing (insular cortex and cerebellum). Computational models of ARDM will help to establish a quantitative explanatory account of the development of anxiety disorders and addiction, but such models also face several challenges, including limited evidence for stability of individual differences, relatively low reliability of tasks, and disorder heterogeneity. Thus, it will be necessary to develop robust, reliable, and model-based experimental probes; recruit larger sample sizes; and use single case experimental designs for better pragmatic and explanatory biological models of psychiatric disorders.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号