首页> 外文期刊>Annals of nuclear energy >Thermal hydraulic modeling of solid-fueled nuclear thermal propulsion reactors part II: Full-core coupled neutronic and thermal hydraulic analysis
【24h】

Thermal hydraulic modeling of solid-fueled nuclear thermal propulsion reactors part II: Full-core coupled neutronic and thermal hydraulic analysis

机译:固体燃料核热推进反应堆的热力力建模第二部分:全堆芯耦合中子和热力力分析

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

? 2022 Elsevier LtdThis paper focuses on the extension and application of the previously validated thermal–hydraulic engineering code ntpThermo to perform multi-channel analysis for full-core coupled neutronic and thermal–hydraulic simulations. This paper also introduces the Basilisk code, which enables coupled full-core neutronic and thermal–hydraulic simulations by integrating Serpent, the continuous energy Monte-Carlo neutron transport code, and ntpThermo within a flexible object-oriented framework. Today, limited data exists pertaining to coupled multiphysics analysis of low-enriched uranium nuclear thermal propulsion reactors. More specifically, the impact of thermal–hydraulic feedback on the neutronic solution for full core applications is not well quantified. In this paper full-core coupled neutronic and thermal–hydraulic simulations are performed to ascertain the importance of thermal–hydraulic feedback on the predicted reactivity and local power distributions. The reactor design analyzed adheres to the current industry ground rules in an effort to provide useful insights for the current industry design effort. The results in this paper demonstrate that thermal–hydraulic feedback must be considered to accurately predict reactivity; otherwise, errors on the order of hundreds to thousands of pcms can be observed. Additionally, neglecting thermal–hydraulic feedback can trigger inconsistencies between the radial power distribution and the fuel orificing pattern. A design approach that doesn't account for thermal–hydraulic feedback can lead to a final design that may experience thermal failure via excessive fuel temperatures, and would require a reduction of reactor power. The latter will cause a subsequent decrease in exit propellant temperatures and thus specific impulse of the rocket engine. Sensitivity studies were conducted to determine the importance of specific thermal–hydraulic fields and revealed that the local moderator temperature has a notable impact on the local power distributions.
机译:?2022 Elsevier Ltd本文重点介绍了先前验证的热-水力工程代码ntpThermo的扩展和应用,以对全核耦合中子和热-水力仿真进行多通道分析。本文还介绍了 Basilisk 代码,该代码通过将 Serpent、连续能量蒙特卡洛中子传输代码和 ntpThermo 集成到灵活的面向对象框架中,实现了耦合的全核中子学和热-水力仿真。目前,与低浓缩铀核热推进反应堆的耦合多物理场分析相关的数据有限。更具体地说,热-水力反馈对全核心应用中子解决方案的影响没有得到很好的量化。本文进行了全核耦合中子学和热-水力仿真,以确定热-水力反馈对预测的反应性和局部功率分布的重要性。分析的反应堆设计遵循当前的行业基本规则,旨在为当前的行业设计工作提供有用的见解。本文的结果表明,必须考虑热-水力反馈才能准确预测反应性;否则,可以观察到数百到数千个 PCM 的错误。此外,忽略热力-水力反馈会引发径向功率分配和燃油孔口模式之间的不一致。不考虑热-水力反馈的设计方法可能导致最终设计可能因燃料温度过高而发生热故障,并且需要降低反应堆功率。后者将导致出口推进剂温度随后降低,从而降低火箭发动机的比冲。通过敏感性研究确定特定热力-水力场的重要性,发现局部慢化剂温度对局部功率分配有显著影响。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号