首页> 外文期刊>Journal of the Brazilian Society of Mechanical Sciences and Engineering >Coupling CFD and RSM to optimize the flow and heat transfer performance of a manifold microchannel heat sink
【24h】

Coupling CFD and RSM to optimize the flow and heat transfer performance of a manifold microchannel heat sink

机译:耦合 CFD 和 RSM,以优化歧管微通道散热器的流动和传热性能

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Maintaining the operating temperature within the allowable range for electronic components is crucial. This work aims to optimize the design of a heatsink manifold microchannel where the working fluid is MWCNT/water-nanofluid. The design parameters include inlet width (L-inlet), outlet width (L-outlet), heatsink height (h(f)), and MWCNT nanoparticle volume fraction in the working fluid (phi)). Minimum pressure drop and minimum thermal resistance are selected as the objective functions. The finite volume method simulates the flow field and heat transfer at each design point. A regression model between the objective functions and the design variables is derived by utilizing the response surface method, and the sensitivity analysis of objective functions is performed by Pareto chart analysis. Finally, the response optimization method configures the optimal design points as L-inlet, L-outlet, h(f) being 85, 91, 245 mu m , respectively, and phi 0.016, corresponding to a pressure loss at 2677 Pa and thermal resistance at 0.8281 K/W. According to the results, the outlet width and heatsink height significantly affect the pressure drop and thermal resistance. Moreover, the physics of the flow field shows that the strength of the corner vortex and separation on the manifold can play a significant role in the thermal and hydraulic performance of the manifold microchannel heat sink. A numerical simulation has been performed to assess the regression model's accuracy in predicting the thermal and fluid performance at the optimum point, showing a good agreement between the model prediction and the simulation results.
机译:将电子元件的工作温度保持在允许的范围内至关重要。本工作旨在优化散热器歧管微通道的设计,其中工作流体为MWCNT/水纳米流体。设计参数包括入口宽度(L-inlet)、出口宽度(L-outlet)、散热器高度(h(f))和工作流体中MWCNT纳米颗粒体积分数(phi))。选择最小压降和最小热阻作为目标函数。有限体积法模拟每个设计点的流场和传热。利用响应面法推导了目标函数与设计变量之间的回归模型,并利用帕累托图分析对目标函数进行了敏感性分析。最后,响应优化方法将最优设计点配置为L-入口,L-出口,h(f)分别为85、91、245 μ m,φ为0.016,对应压力损失为2677 Pa,热阻为0.8281 K/W。根据结果,出口宽度和散热器高度对压降和热阻有显著影响。此外,流场的物理特性表明,转角涡流的强度和歧管上的分离强度对歧管微通道散热器的热力和水力性能起着重要作用。通过数值模拟评估了回归模型在最佳点预测热力和流体性能的准确性,表明模型预测与模拟结果吻合较好。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号