首页> 外文期刊>The Journal of Experimental Biology >Bridging the muscle genome to phenome across multiple biological scales
【24h】

Bridging the muscle genome to phenome across multiple biological scales

机译:跨多个生物学尺度将肌肉基因组桥接到表型组

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Muscle is highly hierarchically organized, with functions shaped by genetically controlled expression of protein ensembles with different isoform profiles at the sarcomere scale. However, it remains unclear how isoform profiles shape whole-muscle performance. We compared two mouse hindlimb muscles, the slow, relatively parallel-fibered soleus and the faster, more pennate-fibered tibialis anterior (TA), across scales: from gene regulation, isoform expression and translation speed, to force-length-velocity-power for intact muscles. Expression of myosin heavy-chain (MHC) isoforms directly corresponded with contraction velocity. The fast-twitch TA with fast MHC isoforms had faster unloaded velocities (actin sliding velocity, V-actin; peak fiber velocity, V-max) than the slow-twitch soleus. For the soleus, V-actin was biased towards V-actin for purely slow MHC I, despite this muscle's even fast and slow MHC isoform composition. Our multi-scale results clearly identified a consistent and significant dampening in fiber shortening velocities for both muscles, underscoring an indirect correlation between V-actin and fiber V-max that may be influenced by differences in fiber architecture, along with internal loading due to both passive and active effects. These influences correlate with the increased peak force and power in the slightly more pennate TA, leading to a broader length range of near-optimal force production. Conversely, a greater force-velocity curvature in the near-parallel fibered soleus highlights the fine-tuning by molecular-scale influences including myosin heavy and light chain expression along with whole-muscle characteristics. Our results demonstrate that the individual gene, protein and whole-fiber characteristics do not directly reflect overall muscle performance but that intricate fine-tuning across scales shapes specialized muscle function.
机译:肌肉是高度分层组织的,其功能由基因控制的蛋白质集合在肌节尺度上具有不同亚型谱的表达来塑造。然而,目前尚不清楚亚型特征如何塑造全肌肉性能。我们比较了两种小鼠后肢肌肉,缓慢的、相对平行的比目鱼肌和较快、更多的羽状纤维胫骨前肌 (TA),从基因调控、亚型表达和翻译速度,到完整肌肉的力-长-速度-功率。肌球蛋白重链 (MHC) 亚型的表达与收缩速度直接相关。与慢速抽搐比目鱼肌相比,具有快速MHC亚型的快速抽搐TA具有更快的卸载速度(肌动蛋白滑动速度,V-肌动蛋白;峰值纤维速度,V-max)。对于比目鱼肌,V-肌动蛋白偏向于纯粹的慢速 MHC I,尽管这种肌肉的 MHC 亚型组成均匀快慢。我们的多尺度结果清楚地确定了两块肌肉的纤维缩短速度一致且显着的抑制,强调了 V-肌动蛋白和纤维 V-max 之间的间接相关性,这可能受到纤维结构差异的影响,以及由于被动和主动效应引起的内部负荷。这些影响与稍长的羽状 TA 中增加的峰值力和功率相关,从而导致更接近最佳力的更宽的长度范围。相反,近平行纤维比目鱼肌中更大的力-速度曲率突出了分子尺度影响的微调,包括肌球蛋白重链和轻链表达以及全肌肉特征。我们的结果表明,单个基因、蛋白质和全纤维特征并不能直接反映整体肌肉性能,但跨量表的复杂微调塑造了专门的肌肉功能。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号