首页> 外文期刊>Journal of Applied Physics >Magnetic field design in a cylindrical high-permeability shield: The combination of simple building blocks and a genetic algorithm
【24h】

Magnetic field design in a cylindrical high-permeability shield: The combination of simple building blocks and a genetic algorithm

机译:圆柱形高磁导率屏蔽中的磁场设计:简单构建模块和遗传算法的结合

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Magnetically sensitive experiments and newly developed quantum technologies with integrated high-permeability magnetic shields require increasing control of their magnetic field environment and reductions in size, weight, power, and cost. However, magnetic fields generated by active components are distorted by high-permeability magnetic shielding, particularly when they are close to the shield's surface. Here, we present an efficient design methodology for creating desired static magnetic field profiles by using discrete coils electromagnetically coupled to a cylindrical passive magnetic shield. We utilize a modified Green's function solution that accounts for the interior boundary conditions on a closed finite-length high-permeability cylindrical magnetic shield and determine simplified expressions when a cylindrical coil approaches the interior surface of the shield. We use an analytic formulation of simple discrete building blocks to provide a complete discrete coil basis to generate any physically attainable magnetic field inside the shield. We then use a genetic algorithm to find optimized discrete coil structures composed of this basis. We use our methodology to generate an improved linear axial gradient field, dB(z)/dz, and a transverse bias field, B-x. These optimized structures generate the desired fields with less than 1 error in volumes seven and three times greater in spatial extent than equivalent unoptimized standard configurations. This coil design method can be used to optimize activepassive magnetic field shaping systems that are compact and simple to manufacture, enabling accurate control of magnetic field changes in spatially confined experiments at low cost. (C) 2022 Author(s).
机译:磁敏实验和新开发的具有集成高磁导率磁屏蔽的量子技术需要加强对其磁场环境的控制,并降低尺寸、重量、功率和成本。然而,有源元件产生的磁场会因高磁导率磁屏蔽而失真,特别是当它们靠近屏蔽表面时。在这里,我们提出了一种有效的设计方法,通过使用电磁耦合到圆柱形无源磁屏蔽的分立线圈来创建所需的静态磁场曲线。我们利用改进的格林函数解来解释闭合有限长度高磁导率圆柱形磁屏蔽层的内部边界条件,并确定圆柱形线圈接近屏蔽层内表面时的简化表达式。我们使用简单离散构建块的解析公式来提供完整的离散线圈基础,以在屏蔽层内产生任何物理上可达到的磁场。然后,我们使用遗传算法来寻找由该基础组成的优化离散线圈结构。我们使用我们的方法生成改进的线性轴向梯度场 dB(z)/dz 和横向偏置场 B-x。这些优化的结构在体积中产生的所需场误差小于 1%,空间范围是等效未优化标准配置的 7 倍和 3 倍。这种线圈设计方法可用于优化紧凑且易于制造的有源被动磁场整形系统,从而能够以低成本精确控制空间受限实验中的磁场变化。(c) 2022 年作者。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号