首页> 外文期刊>Nucleic Acids Research >Robust counterselection and advanced lambda Red recombineering enable markerless chromosomal integration of large heterologous constructs
【24h】

Robust counterselection and advanced lambda Red recombineering enable markerless chromosomal integration of large heterologous constructs

机译:Robust counterselection and advanced lambda Red recombineering enable markerless chromosomal integration of large heterologous constructs

获取原文
获取原文并翻译 | 示例
           

摘要

Despite advances in bacterial genome engineering, delivery of large synthetic constructs remains challenging in practice. In this study, we propose a straightforward and robust approach for the markerless integration of DNA fragments encoding whole metabolic pathways into the genome. This approach relies on the replacement of a counterselection marker with cargo DNA cassettes via lambda Red recombineering. We employed a counterselection strategy involving a genetic circuit based on the CI repressor of lambda phage. Our design ensures elimination of most spontaneous mutants, and thus provides a counterselection stringency close to the maximum possible. We improved the efficiency of integrating long PCR-generated cassettes by exploiting the Ocr antirestriction function of T7 phage, which completely prevents degradation of unmethylated DNA by restriction endonucleases in wild-type bacteria. The employment of highly restrictive counterselection and ocr-assisted lambda Red recombineering allowed markerless integration of operon-sized cassettes into arbitrary genomic loci of four enterobacterial species with an efficiency of 50-100. In the case of Escherichia coli, our strategy ensures simple combination of markerless mutations in a single strain via P1 transduction. Overall, the proposed approach can serve as a general tool for synthetic biology and metabolic engineering in a range of bacterial hosts.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号