...
首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Li6SiO4Cl2: A Hexagonal Argyrodite Based on Antiperovskite Layer Stacking
【24h】

Li6SiO4Cl2: A Hexagonal Argyrodite Based on Antiperovskite Layer Stacking

机译:Li6SiO4Cl2: A Hexagonal Argyrodite Based on Antiperovskite Layer Stacking

获取原文
获取原文并翻译 | 示例

摘要

A hexagonal analogue, Li_(6)SiO_(4)Cl_(2), of the cubic lithium argyrodite family of solid electrolytes is isolated by a computation–experiment approach. We show that the argyrodite structure is equivalent to the cubic antiperovskite solid electrolyte structure through anion site and vacancy ordering within a cubic stacking of two close-packed layers. Construction of models that assemble these layers with the combination of hexagonal and cubic stacking motifs, both well known in the large family of perovskite structural variants, followed by energy minimization identifies Li_(6)SiO_(4)Cl_(2) as a stable candidate composition. Synthesis and structure determination demonstrate that the material adopts the predicted lithium site-ordered structure with a low lithium conductivity of ∼10~(–10) S cm~(–1) at room temperature and the predicted hexagonal argyrodite structure above an order–disorder transition at 469.3(1) K. This transition establishes dynamic Li site disorder analogous to that of cubic argyrodite solid electrolytes in hexagonal argyrodite Li_(6)SiO_(4)Cl_(2) and increases Li-ion mobility observed via NMR and AC impedance spectroscopy. The compositional flexibility of both argyrodite and perovskite alongside this newly established structural connection, which enables the use of hexagonal and cubic stacking motifs, identifies a wealth of unexplored chemistry significant to the field of solid electrolytes.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号