...
首页> 外文期刊>Journal of Applied Physics >Reduction of helium permeation in microfabricated cells using aluminosilicate glass substrates and Al2O3 coatings
【24h】

Reduction of helium permeation in microfabricated cells using aluminosilicate glass substrates and Al2O3 coatings

机译:Reduction of helium permeation in microfabricated cells using aluminosilicate glass substrates and Al2O3 coatings

获取原文
获取原文并翻译 | 示例

摘要

The stability and accuracy of atomic devices can be degraded by the evolution of their cell inner atmosphere. Hence, the undesired entrance or leakage of background or buffer gas, respectively, that can permeate through the cell walls, should be slowed down. In this work, we investigate helium permeation in microfabricated alkali vapor cells filled with He and whose windows are made of borosilicate glass (BSG) or aluminosilicate glass (ASG). The permeation is then derived from routine measurements of the pressure-shifted hyperfine transition frequency of an atomic clock. We first confirm that ASG reduces the He permeation rate by more than two orders of magnitude, in comparison to BSG. In addition, we demonstrate that Al 2O 3 thin-film coatings, known to avoid alkali consumption in vapor cells, can also significantly reduce He permeation. The permeation through BSG is thereby reduced by a factor up to 130, whereas the one through ASG is decreased by a factor up to 5.0 compared to uncoated substrates. These results may contribute to the development of miniaturized atomic clocks and sensors with improved long-term stability or sensitivity.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号