...
首页> 外文期刊>Medical Physics >Monte Carlo simulations of nanodosimetry and radiolytic species production for monoenergetic proton and electron beams: Benchmarking of GEANT4‐DNA and LPCHEM codes
【24h】

Monte Carlo simulations of nanodosimetry and radiolytic species production for monoenergetic proton and electron beams: Benchmarking of GEANT4‐DNA and LPCHEM codes

机译:单能质子束和电子束的纳米剂量学和放射性物质生产的蒙特卡罗模拟:GEANT4-DNA和LPCHEM代码的基准测试

获取原文
获取原文并翻译 | 示例

摘要

Abstract Purpose In hadrontherapy, biophysical models can be used to predict the biological effect received by cancerous tissues and organs at risk. The input data of these models generally consist of information on nano/micro dosimetric quantities and, concerning some models, reactive species produced in water radiolysis. In order to fully account for the radiation stochastic effects, these input data have to be provided by Monte Carlo track structure (MCTS) codes allowing to estimate physical, physico‐chemical, and chemical effects of radiation at the molecular scale. The objective of this study is to benchmark two MCTS codes, Geant4‐DNA and LPCHEM, that are useful codes for estimating the biological effects of ions during radiation therapy treatments. Material and methods In this study we considered the simulation of specific energy spectra for monoenergetic proton beams (10 MeV) as well as radiolysis species production for both electron (1 MeV) and proton (10 MeV) beams with Geant4‐DNA and LPCHEM codes. Options 2, 4, and 6 of the Geant4‐DNA physics lists have been benchmarked against LPCHEM. We compared probability distributions of energy transfer points in cylindrical nanometric targets (10?nm) positioned in a liquid water box. Then, radiochemical species (· OH, eaq?${rm{e}}_{{rm{aq}}}^ - $, H3O+,H2O2${{rm{H}}_3}{{rm{O}}^ + },{rm{;}}{{rm{H}}_2}{{rm{O}}_2}$, H2, and OH?)${rm{O}}{{rm{H}}^ - }){rm{;}}$yields simulated between 10?12 and 10?6 s after irradiation are compared. Results Overall, the specific energy spectra and the chemical yields obtained by the two codes are in good agreement considering the uncertainties on experimental data used to calibrate the parameters of the MCTS codes. For 10 MeV proton beams, ionization and excitation processes are the major contributors to the specific energy deposition (larger than 90) while attachment, solvation, and vibration processes are minor contributors. LPCHEM simulates tracks with slightly more concentrated energy depositions than Geant4‐DNA which translates into slightly faster recombination than Geant4‐DNA. Relative deviations (CEV) with respect to the average of evolution rates of the radical yields between 10?12 and 10?6 s remain below 10. When comparing execution times between the codes, we showed that LPCHEM is faster than Geant4‐DNA by a factor of about four for 1000 primary particles in all simulation stages (physical, physico‐chemical, and chemical). In multi‐thread mode (four threads), Geant4‐DNA computing times are reduced but remain slower than LPCHEM by ~20 up to ~50. Conclusions For the first time, the entire physical, physico‐chemical, and chemical models of two track structure Monte Carlo codes have been benchmarked along with an extensive analysis on the effects on the water radiolysis simulation. This study opens up new perspectives in using specific energy distributions and radiolytic species yields from monoenergetic ions in biophysical models integrated to Monte Carlo software.
机译:摘要 目的 在强子疗法中,生物物理模型可用于预测癌组织和有风险器官所接受的生物学效应。这些模型的输入数据通常包括关于纳米/微量的信息,对于某些模型,还包括在水辐射分解中产生的反应性物质。为了充分考虑辐射随机效应,这些输入数据必须由蒙特卡洛轨道结构 (MCTS) 代码提供,从而可以在分子尺度上估计辐射的物理、物理化学和化学效应。本研究的目的是对两种 MCTS 代码 Geant4-DNA 和 LPCHEM 进行基准测试,它们是估计放射治疗期间离子生物学效应的有用代码。材料和方法 在这项研究中,我们考虑了单能质子束(10 MeV)的比能谱模拟,以及具有Geant4-DNA和LPCHEM代码的电子(1 MeV)和质子(10 MeV)束的辐射分解物质产生。Geant4-DNA物理列表的选项2、4和6已与LPCHEM进行了基准测试。我们比较了位于液态水箱中的圆柱形纳米靶(10?nm)中能量转移点的概率分布。然后,放射性化学物质(·OH, eaq?${rm{e}}_{{rm{aq}}}^ - $, H3O+,H2O2${{rm{H}}_3}{{rm{O}}^ + },{rm{;}}{{rm{H}}_2}{{rm{O}}_2}$、H2 和 OH?)${rm{O}}{{rm{H}}^ - }){rm{;}}比较了辐照后10?12和10?6 s之间的模拟$yields。结果 考虑到用于校准MCTS码参数的实验数据的不确定性,两种编码得到的比能谱和化学产率具有较好的一致性。对于 10 MeV 质子束,电离和激发过程是比能量沉积(大于 90%)的主要贡献者,而附着、溶剂化和振动过程是次要贡献者。LPCHEM模拟的能量沉积比Geant4-DNA略高的轨迹,这意味着重组速度比Geant4-DNA略快。在10?12和10?6 s之间,自由基产率的进化速率平均值的相对偏差(CEV)保持在10%以下。在比较代码之间的执行时间时,我们发现,在所有模拟阶段(物理、物理化学和化学)中,对于1000个初级颗粒,LPCHEM比Geant4-DNA快约四倍。在多线程模式(四线程)下,Geant4-DNA的计算时间缩短,但仍比LPCHEM慢~20%至~50%。结论 首次对双轨结构蒙特卡罗规范的整个物理、理化和化学模型进行了基准测试,并对水辐射分解模拟的影响进行了广泛的分析。这项研究为在集成到蒙特卡罗软件的生物物理模型中使用单能离子的特定能量分布和放射性物质产率开辟了新的视角。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号