首页> 外文期刊>Computational geosciences >Conditioning generative adversarial networks on nonlinear data for subsurface flow model calibration and uncertainty quantification
【24h】

Conditioning generative adversarial networks on nonlinear data for subsurface flow model calibration and uncertainty quantification

机译:Conditioning generative adversarial networks on nonlinear data for subsurface flow model calibration and uncertainty quantification

获取原文
获取原文并翻译 | 示例
       

摘要

Conditioning complex subsurface flow models on nonlinear data is complicated by the need to preserve the expected geological connectivity patterns to maintain solution plausibility. Generative adversarial networks (GANs) have recently been proposed as a promising approach for low-dimensional representation of complex high-dimensional images. The method has also been adopted for low-rank parameterization of complex geologic models to facilitate uncertainty quantification workflows. A difficulty in adopting these methods for subsurface flow modeling is the complexity associated with nonlinear flow data conditioning. While conditional GAN (CGAN) can condition simulated images on labels, application to subsurface problems requires efficient conditioning workflows for nonlinear data, which is far more complex. We present two approaches for generating flow-conditioned models with complex spatial patterns using GAN. The first method is through conditional GAN, whereby a production response label is used as an auxiliary input during the training stage of GAN. The production label is derived from clustering of the flow responses of the prior model realizations (i.e., training data). The underlying assumption of this approach is that GAN can learn the association between the spatial features corresponding to the production responses within each cluster. An alternative method is to use a subset of samples from the training data that are within a certain distance from the observed flow responses and use them as training data within GAN to generate new model realizations. In this case, GAN is not required to learn the nonlinear relation between production responses and spatial patterns. Instead, it is tasked to learn the patterns in the selected realizations that provide a close match to the observed data. The conditional low-dimensional parameterization for complex geologic models with diverse spatial features (i.e., when multiple geologic scenarios are plausible) performed by GAN allows for exploring the spatial variability in the conditional realizations, which can be critical for decision-making. We present and discuss the important properties of GAN for data conditioning using several examples with increasing complexity.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号