...
首页> 外文期刊>DVS-Berichte >Aerosol Deposition of BiVO_4 Films for Solar Hydrogen Generation
【24h】

Aerosol Deposition of BiVO_4 Films for Solar Hydrogen Generation

机译:Aerosol Deposition of BiVO_4 Films for Solar Hydrogen Generation

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Due to its suitable semiconductor band gap energies and associated visible light absorption, bismuth vanadate offers high photon efficiencies in solar photo-anodes, enabling green hydrogen generation in photoelectrochemical water splitting cells. Respective bismuth vanadate films have to ensure high efficiencies in electron/hole pair generation, and sufficiently high rates of charge transfer, for both, electrons to the conducting substrate, as well as holes to the electrolyte. Thus, tuning of coating properties has to aim for high phase purity and good layer integrity. So far, respective films are mainly produced by thin film techniques, but at rather high costs and low deposition rates. Less costly processing routes are opened by thermal spraying or sol-gel techniques, however, these cannot guarantee the required phase purity or absence of remnants from the binder. As solid state and binderless alternative, Aerosol Deposition (AD) offers several advantages: comparative low costs, high deposition rates, no undesired phase transformations, and no impurities or residues that could reduce the photoelectrochemical activity. Under the scope of this research on photo-electrochemically active bismuth vanadate films, powder sizes were tailored by milling, and spray parameter sets like the process gas pressure were varied, in order to elucidate their influence on microstructure and application properties. Covering a wide parameter range in aerosol deposition allowed for the development of a window of deposition. Most promising combinations for layer build-up were derived. The results on stainless steel substrates were transferred to FTO-coated glass substrates, as needed in backlit cell layouts. For fine tuning of maximum photocurrents, layer thickness and conductivity were then systematically adjusted. Homogeneous large-scale prototypes demonstrate that aerosol deposition is suitable for processing layers for solar energy harvesting.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号