...
首页> 外文期刊>Journal of Applied Physics >Tutorial: Piezoelectric and magnetoelectric N/MEMS-Materials, devices, and applications
【24h】

Tutorial: Piezoelectric and magnetoelectric N/MEMS-Materials, devices, and applications

机译:Tutorial: Piezoelectric and magnetoelectric N/MEMS-Materials, devices, and applications

获取原文
获取原文并翻译 | 示例

摘要

Nano-and micro-electromechanical systems (N/MEMSs) are traditionally based on electrostatic or piezoelectric coupling, which couples electrical and mechanical energy through acoustic resonator structures. Most recently, N/MEMS devices based on magnetoelectrics are gaining much attention. Unlike electrostatic or piezoelectric N/MEMS that rely on an AC electric field or voltage excitation, magnetoelecric N/MEMS rely on the electromechanical resonance of a magnetostrictive/piezoelectric bilayer heterostructure exhibiting a strong strain -mediated magnetoelectric coupling under the excitation of a magnetic field and/or electric field. As a consequence, magnetoelectric N/MEMS enable unprecedented new applications, ranging from magnetoelectric sensors, ultra-compact magnetoelectric antennas, etc. This Tutorial will first outline the fundamental principles of piezoelectric materials, resonator design, specifically different acoustic modes, and piezoelectric-based N/MEMS applications, i.e., radio frequency front end filters and infrared radiation sensors. We will then provide an overview of magnetoelectric materials and N/MEMS focusing on the governing physics of the magnetoelectric effect, magnetic material properties for achieving high magnetoelectric coupling, state-of-the-art magnetoelectric N/MEMS devices, and their respective applications. Published under an exclusive license by AIP Publishing.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号