...
首页> 外文期刊>plos computational biology >Cell type-specific mechanisms of information transfer in data-driven biophysical models of hippocampal CA3 principal neurons
【24h】

Cell type-specific mechanisms of information transfer in data-driven biophysical models of hippocampal CA3 principal neurons

机译:海马CA3主神经元数据驱动的生物物理模型中信息传递的细胞类型特异性机制

获取原文
获取原文并翻译 | 示例

摘要

The transformation of synaptic input into action potential output is a fundamental single-cell computation resulting from the complex interaction of distinct cellular morphology and the unique expression profile of ion channels that define the cellular phenotype. Experimental studies aimed at uncovering the mechanisms of the transfer function have led to important insights, yet are limited in scope by technical feasibility, making biophysical simulations an attractive complementary approach to push the boundaries in our understanding of cellular computation. Here we take a data-driven approach by utilizing high-resolution morphological reconstructions and patch-clamp electrophysiology data together with a multi-objective optimization algorithm to build two populations of biophysically detailed models of murine hippocampal CA3 pyramidal neurons based on the two principal cell types that comprise this region. We evaluated the performance of these models and find that our approach quantitatively matches the cell type-specific firing phenotypes and recapitulate the intrinsic population-level variability in the data. Moreover, we confirm that the conductance values found by the optimization algorithm are consistent with differentially expressed ion channel genes in single-cell transcriptomic data for the two cell types. We then use these models to investigate the cell type-specific biophysical properties involved in the generation of complex-spiking output driven by synaptic input through an information-theoretic treatment of their respective transfer functions. Our simulations identify a host of cell type-specific biophysical mechanisms that define the morpho-functional phenotype to shape the cellular transfer function and place these findings in the context of a role for bursting in CA3 recurrent network synchronization dynamics. Author summaryThe hippocampus is comprised of numerous types of neurons, which constitute the cellular substrate for its rich repertoire of network dynamics. Among these are sharp waves, sequential activations of ensembles of neurons that have been shown to be crucially involved in learning and memory. In the CA3 area of the hippocampus, two types of excitatory cells, thorny and a-thorny neurons, are preferentially active during distinct phases of a sharp wave, suggesting a differential role for these cell types in phenomena such as memory consolidation. Using a strictly data-driven approach, we built biophysically realistic models of both thorny and a-thorny cells and used them to investigate the integrative differences between these two cell types. We found that both neuron classes have the capability of integrating incoming synaptic inputs in a supralinear fashion, although only a-thorny cells respond with bursts of action potentials to spatially and temporally clustered synaptic inputs. Additionally, by using a computational approach based on information theory, we show that, owing to this propensity for bursting, a-thorny cells can encode more information in their spiking output than their thorny counterpart. These results shed new light on the computational capabilities of two types of excitatory neurons and suggest that thorny and a-thorny cells may play distinct roles in the generation of hippocampal network synchronization.
机译:将突触输入转化为动作电位输出是一种基本的单细胞计算,由不同细胞形态的复杂相互作用和定义细胞表型的离子通道的独特表达谱产生。旨在揭示传递函数机制的实验研究已经产生了重要的见解,但范围受到技术可行性的限制,这使得生物物理模拟成为一种有吸引力的补充方法,可以突破我们对细胞计算的理解。在这里,我们采用数据驱动的方法,利用高分辨率形态重建和膜片钳电生理学数据以及多目标优化算法,基于构成该区域的两种主要细胞类型,构建小鼠海马CA3锥体神经元的两个生物物理详细模型群。我们评估了这些模型的性能,发现我们的方法定量匹配了细胞类型特异性放电表型,并概括了数据中固有的群体水平变异性。此外,我们确认优化算法发现的电导值与两种细胞类型的单细胞转录组数据中差异表达的离子通道基因一致。然后,我们使用这些模型来研究细胞类型特定的生物物理特性,这些特性涉及通过对突触输入驱动的复杂脉冲输出的产生,通过对它们各自的传递函数进行信息理论处理。我们的模拟确定了许多细胞类型特异性的生物物理机制,这些机制定义了形态功能表型以塑造细胞转移函数,并将这些发现置于CA3循环网络同步动态中爆发作用的背景下。作者摘要海马体由多种类型的神经元组成,这些神经元构成了其丰富的网络动力学库的细胞基质。其中包括尖锐的波,神经元集合的顺序激活,已被证明与学习和记忆至关重要。在海马体的CA3区域,两种类型的兴奋性细胞,刺状神经元和无刺神经元,在尖锐波的不同阶段优先活跃,这表明这些细胞类型在记忆巩固等现象中的作用不同。使用严格的数据驱动方法,我们建立了带刺细胞和带刺细胞的生物物理真实模型,并用它们来研究这两种细胞类型之间的整合差异。我们发现,这两种神经元类别都具有以超线性方式整合传入突触输入的能力,尽管只有带刺的细胞对空间和时间簇的突触输入做出动作电位的爆发。此外,通过使用基于信息论的计算方法,我们表明,由于这种爆发倾向,a-thorny细胞可以在其尖峰输出中编码比其棘手的对应物更多的信息。这些结果为两种类型的兴奋性神经元的计算能力提供了新的思路,并表明带刺细胞和带刺细胞可能在海马网络同步的产生中发挥不同的作用。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号