...
首页> 外文期刊>Journal of endocrinological investigation. >The role and molecular mechanism of gut microbiota in Graves' orbitopathy
【24h】

The role and molecular mechanism of gut microbiota in Graves' orbitopathy

机译:The role and molecular mechanism of gut microbiota in Graves' orbitopathy

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Purpose Graves' orbitopathy (GO) is an autoimmune orbital disorder. Gut microbiota dysfunction plays a vital role in autoimmune diseases, including Graves' disease (GD) and GO. In the present study, we aimed to investigate the change of gut microbiota in GD/GO using mouse model. Methods The murine model of GD/GO was established by the challenge of adenovirus expressing thyroid-stimulating hormone (TSH) receptor (TSHR) (Ad-TSHR). The histological changes of orbital and thyroid tissues were analyzed by hematoxylin and eosin (HE), Masson staining, and immunohistochemistry (IHC) staining. The fecal samples were collected for 16S rRNA gene sequencing and bioinformatics analysis. Results The GD/GO model was established successfully, as manifested as the broadened eyelid, exophthalmia and conjunctive redness, severe inflammatory infiltration among thyroid glands and between extraocular muscle space, hypertrophic extraocular muscles, elevated thyroxine (T4) and decreased TSH, and positive CD34, CD40, collagen I, and alpha-SMA staining. A total of 222 operational taxonomic units (OUTs) were overlapped between mice in the Ad-NC and Ad-TSHR groups. The microbial composition of the samples in the two groups was mainly Bacteroidia and Clostridia, and the Ad-NC group had a significantly lower content of Bacteroidia and higher content of Clostridia. KEGG orthology analysis results revealed differences in dehydrogenase, aspartic acid, bile acid, chalcone synthase, acetyltransferase, glutamylcyclotransferase, glycogenin, and 1-phosphatidylinositol-4-phosphate 5-kinase between two groups; enzyme commission (EC) analysis results revealed differences in several dehydrogenase, oxidase, thioxy/reductase between two groups; MetaCyc pathways analysis results revealed differences in isoleucine degradation, oxidation of C1 compounds, tricarboxylic acid (TCA) cycle IV, taurine degradation, and biosynthesis of paromamine, heme, colonic acid building blocks, butanediol, lysine/threonine/methionine, and histidine/purine/pyrimidine between two groups. Conclusion This study induced a mouse model of GD/GO by Ad-TSHR challenge, and gut microbiota characteristics were identified in the GD/GO mice. The Bacteroidia and Clostridia abundance was changed in the GD/GO mice. These findings may lay a solid experimental foundation for developing personalized treatment regimens for GD patients according to the individual gut microbiota. Given the potential impact of regional differences on intestinal microbiota, this study in China may provide a reference for the global overview of the gut-thyroid axis hypothesis.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号